These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 23484526)
1. Graphene drape minimizes the pinning and hysteresis of water drops on nanotextured rough surfaces. Singh E; Thomas AV; Mukherjee R; Mi X; Houshmand F; Peles Y; Shi Y; Koratkar N ACS Nano; 2013 Apr; 7(4):3512-21. PubMed ID: 23484526 [TBL] [Abstract][Full Text] [Related]
2. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
3. Electrochemistry of individual monolayer graphene sheets. Li W; Tan C; Lowe MA; Abruña HD; Ralph DC ACS Nano; 2011 Mar; 5(3):2264-70. PubMed ID: 21332139 [TBL] [Abstract][Full Text] [Related]
4. Enhanced condensation on lubricant-impregnated nanotextured surfaces. Anand S; Paxson AT; Dhiman R; Smith JD; Varanasi KK ACS Nano; 2012 Nov; 6(11):10122-9. PubMed ID: 23030619 [TBL] [Abstract][Full Text] [Related]
5. Dynamics of nanoscale droplets on moving surfaces. Ritos K; Dongari N; Borg MK; Zhang Y; Reese JM Langmuir; 2013 Jun; 29(23):6936-43. PubMed ID: 23683083 [TBL] [Abstract][Full Text] [Related]
6. Wetting and interfacial properties of water nanodroplets in contact with graphene and monolayer boron-nitride sheets. Li H; Zeng XC ACS Nano; 2012 Mar; 6(3):2401-9. PubMed ID: 22356158 [TBL] [Abstract][Full Text] [Related]
7. Site-specific stamping of graphene micro-patterns over large areas using flexible stamps. Chen CH; Reddy KM; Padture NP Nanotechnology; 2012 Jun; 23(23):235603. PubMed ID: 22595887 [TBL] [Abstract][Full Text] [Related]
8. What is the contact angle of water on graphene? Taherian F; Marcon V; van der Vegt NF; Leroy F Langmuir; 2013 Feb; 29(5):1457-65. PubMed ID: 23320893 [TBL] [Abstract][Full Text] [Related]
9. Homogeneous bilayer graphene film based flexible transparent conductor. Lee S; Lee K; Liu CH; Zhong Z Nanoscale; 2012 Jan; 4(2):639-44. PubMed ID: 22146772 [TBL] [Abstract][Full Text] [Related]
10. Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance. Kim P; Wong TS; Alvarenga J; Kreder MJ; Adorno-Martinez WE; Aizenberg J ACS Nano; 2012 Aug; 6(8):6569-77. PubMed ID: 22680067 [TBL] [Abstract][Full Text] [Related]
11. Graphene as a long-term metal oxidation barrier: worse than nothing. Schriver M; Regan W; Gannett WJ; Zaniewski AM; Crommie MF; Zettl A ACS Nano; 2013 Jul; 7(7):5763-8. PubMed ID: 23755733 [TBL] [Abstract][Full Text] [Related]
13. Infrared spectroscopy of wafer-scale graphene. Yan H; Xia F; Zhu W; Freitag M; Dimitrakopoulos C; Bol AA; Tulevski G; Avouris P ACS Nano; 2011 Dec; 5(12):9854-60. PubMed ID: 22077967 [TBL] [Abstract][Full Text] [Related]
14. Bioinspired ultrahigh water pinning nanostructures. Law JB; Ng AM; He AY; Low HY Langmuir; 2014 Jan; 30(1):325-31. PubMed ID: 24358957 [TBL] [Abstract][Full Text] [Related]
15. Extremely superhydrophobic surfaces with micro- and nanostructures fabricated by copper catalytic etching. Lee JP; Choi S; Park S Langmuir; 2011 Jan; 27(2):809-14. PubMed ID: 21162520 [TBL] [Abstract][Full Text] [Related]
16. Micro-micro hierarchy replacing micro-nano hierarchy: a precisely controlled way to produce wear-resistant superhydrophobic polymer surfaces. Huovinen E; Hirvi J; Suvanto M; Pakkanen TA Langmuir; 2012 Oct; 28(41):14747-55. PubMed ID: 23009694 [TBL] [Abstract][Full Text] [Related]