These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 23484541)

  • 1. Micromodel investigation of transport effect on the kinetics of reductive dissolution of hematite.
    Zhang C; Liu C; Shi Z
    Environ Sci Technol; 2013 May; 47(9):4131-9. PubMed ID: 23484541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controls on Fe(II)-activated trace element release from goethite and hematite.
    Frierdich AJ; Catalano JG
    Environ Sci Technol; 2012 Feb; 46(3):1519-26. PubMed ID: 22185654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of reductive dissolution of hematite by bioreduced anthraquinone-2,6-disulfonate.
    Liu C; Zachara JM; Foster NS; Strickland J
    Environ Sci Technol; 2007 Nov; 41(22):7730-5. PubMed ID: 18075081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox reactions of reduced flavin mononucleotide (FMN), riboflavin (RBF), and anthraquinone-2,6-disulfonate (AQDS) with ferrihydrite and lepidocrocite.
    Shi Z; Zachara JM; Shi L; Wang Z; Moore DA; Kennedy DW; Fredrickson JK
    Environ Sci Technol; 2012 Nov; 46(21):11644-52. PubMed ID: 22985396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reaction of hydroquinone with hematite; II. Calculated electron-transfer rates and comparison to the reductive dissolution rate.
    Stack AG; Rosso KM; Smith DM; Eggleston CM
    J Colloid Interface Sci; 2004 Jun; 274(2):442-50. PubMed ID: 15144815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of chelating agents on biogenic uraninite reoxidation by Fe(III) (Hydr)oxides.
    Stewart BD; Girardot C; Spycher N; Sani RK; Peyton BM
    Environ Sci Technol; 2013 Jan; 47(1):364-71. PubMed ID: 23163577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of hematite/Fe(II) systems with cement/Fe(II) systems in reductively dechlorinating trichloroethylene.
    Kim HS; Kang WH; Kim M; Park JY; Hwang I
    Chemosphere; 2008 Oct; 73(5):813-9. PubMed ID: 18597815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissolution of hematite nanoparticle aggregates: influence of primary particle size, dissolution mechanism, and solution pH.
    Lanzl CA; Baltrusaitis J; Cwiertny DM
    Langmuir; 2012 Nov; 28(45):15797-808. PubMed ID: 23078147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of biological reductive dissolution of hematite by ferrous iron.
    Royer RA; Dempsey BA; Jeon BH; Burgos WD
    Environ Sci Technol; 2004 Jan; 38(1):187-93. PubMed ID: 14740735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potentiometric and further kinetic characterization of the flavin-binding domain of Saccharomyces cerevisiae flavocytochrome b2. Inhibition by anions binding in the active site.
    Cénas N; Lê KH; Terrier M; Lederer F
    Biochemistry; 2007 Apr; 46(15):4661-70. PubMed ID: 17373777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of outer membrane c-type cytochromes MtrC and OmcA in Shewanella oneidensis MR-1 cell production, accumulation, and detachment during respiration on hematite.
    Mitchell AC; Peterson L; Reardon CL; Reed SB; Culley DE; Romine MR; Geesey GG
    Geobiology; 2012 Jul; 10(4):355-70. PubMed ID: 22360295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facet-dependent electron transfer induces distinct arsenic reallocations on hematite.
    Fang L; Chi J; Shi Q; Wu Y; Li F
    Water Res; 2023 Aug; 242():120180. PubMed ID: 37320876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fe(II)-mediated reduction and repartitioning of structurally incorporated Cu, Co, and Mn in iron oxides.
    Frierdich AJ; Catalano JG
    Environ Sci Technol; 2012 Oct; 46(20):11070-7. PubMed ID: 22970760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Creation of a dual-porosity and dual-depth micromodel for the study of multiphase flow in complex porous media.
    Yun W; Ross CM; Roman S; Kovscek AR
    Lab Chip; 2017 Apr; 17(8):1462-1474. PubMed ID: 28294224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biogenic hydroxyapatite (Apatite II™) dissolution kinetics and metal removal from acid mine drainage.
    Oliva J; Cama J; Cortina JL; Ayora C; De Pablo J
    J Hazard Mater; 2012 Apr; 213-214():7-18. PubMed ID: 22341745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Connecting observations of hematite (alpha-Fe2O3) growth catalyzed by Fe(II).
    Rosso KM; Yanina SV; Gorski CA; Larese-Casanova P; Scherer MM
    Environ Sci Technol; 2010 Jan; 44(1):61-7. PubMed ID: 20039734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shewanella putrefaciens produces an Fe(III)-solubilizing organic ligand during anaerobic respiration on insoluble Fe(III) oxides.
    Taillefert M; Beckler JS; Carey E; Burns JL; Fennessey CM; DiChristina TJ
    J Inorg Biochem; 2007 Nov; 101(11-12):1760-7. PubMed ID: 17765315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size-dependent structural transformations of hematite nanoparticles. 1. Phase transition.
    Chernyshova IV; Hochella MF; Madden AS
    Phys Chem Chem Phys; 2007 Apr; 9(14):1736-50. PubMed ID: 17396185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of Wüstite (FeO) dissolution: implications for reductive dissolution of ferric oxides.
    Jang JH; Brantley SL
    Environ Sci Technol; 2009 Feb; 43(4):1086-90. PubMed ID: 19320162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reductive dissolution of Fe(III) oxides by Pseudomonas sp. 200.
    Arnold RG; DiChristina TJ; Hoffmann MR
    Biotechnol Bioeng; 1988 Oct; 32(9):1081-96. PubMed ID: 18587827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.