These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 23484543)

  • 1. Plasmonically enhanced thermomechanical detection of infrared radiation.
    Yi F; Zhu H; Reed JC; Cubukcu E
    Nano Lett; 2013 Apr; 13(4):1638-43. PubMed ID: 23484543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmo-thermomechanical radiation detector with on-chip optical readout.
    Zhao Q; Khan MW; Farzinazar S; Lee J; Boyraz O
    Opt Express; 2018 Nov; 26(23):29638-29650. PubMed ID: 30469925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic piezoelectric nanomechanical resonator for spectrally selective infrared sensing.
    Hui Y; Gomez-Diaz JS; Qian Z; Alù A; Rinaldi M
    Nat Commun; 2016 Apr; 7():11249. PubMed ID: 27080018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmon nanomechanical coupling for nanoscale transduction.
    Thijssen R; Verhagen E; Kippenberg TJ; Polman A
    Nano Lett; 2013 Jul; 13(7):3293-7. PubMed ID: 23746212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanomechanical silicon resonators with intrinsic tunable gain and sub-nW power consumption.
    Bartsch ST; Lovera A; Grogg D; Ionescu AM
    ACS Nano; 2012 Jan; 6(1):256-64. PubMed ID: 22148851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a surface plasmon resonance and nanomechanical biosensing hybrid platform for multiparametric reading.
    Alvarez M; Fariña D; Escuela AM; Sendra JR; Lechuga LM
    Rev Sci Instrum; 2013 Jan; 84(1):015008. PubMed ID: 23387688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cavity-less on-chip optomechanics using excitonic transitions in semiconductor heterostructures.
    Okamoto H; Watanabe T; Ohta R; Onomitsu K; Gotoh H; Sogawa T; Yamaguchi H
    Nat Commun; 2015 Oct; 6():8478. PubMed ID: 26477487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Broadband light coupling to dielectric slot waveguides with tapered plasmonic nanoantennas.
    Maksymov IS; Kivshar YS
    Opt Lett; 2013 Nov; 38(22):4853-6. PubMed ID: 24322149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum Plasmonic Immunoassay Sensing.
    Kongsuwan N; Xiong X; Bai P; You JB; Png CE; Wu L; Hess O
    Nano Lett; 2019 Sep; 19(9):5853-5861. PubMed ID: 31356753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hybrid on-chip optomechanical transducer for ultrasensitive force measurements.
    Gavartin E; Verlot P; Kippenberg TJ
    Nat Nanotechnol; 2012 Aug; 7(8):509-14. PubMed ID: 22728341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sub-wavelength energy concentration with electrically generated mid-infrared surface plasmons.
    Bousseksou A; Babuty A; Tetienne JP; Moldovan-Doyen I; Braive R; Beaudoin G; Sagnes I; De Wilde Y; Colombelli R
    Opt Express; 2012 Jun; 20(13):13738-47. PubMed ID: 22714439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency Stabilization of Nanomechanical Resonators Using Thermally Invariant Strain Engineering.
    Wang M; Zhang R; Ilic R; Aksyuk V; Liu Y
    Nano Lett; 2020 May; 20(5):3050-3057. PubMed ID: 32250636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silicon hybrid plasmonic submicron-donut resonator with pure dielectric access waveguides.
    Dai D; Shi Y; He S; Wosinski L; Thylen L
    Opt Express; 2011 Nov; 19(24):23671-82. PubMed ID: 22109393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic nanofocusing of light in an integrated silicon photonics platform.
    Desiatov B; Goykhman I; Levy U
    Opt Express; 2011 Jul; 19(14):13150-7. PubMed ID: 21747468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Waveguide-Integrated Compact Plasmonic Resonators for On-Chip Mid-Infrared Laser Spectroscopy.
    Chen C; Mohr DA; Choi HK; Yoo D; Li M; Oh SH
    Nano Lett; 2018 Dec; 18(12):7601-7608. PubMed ID: 30216715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays.
    Abb M; Wang Y; Papasimakis N; de Groot CH; Muskens OL
    Nano Lett; 2014 Jan; 14(1):346-52. PubMed ID: 24341902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Harnessing optical forces in integrated photonic circuits.
    Li M; Pernice WH; Xiong C; Baehr-Jones T; Hochberg M; Tang HX
    Nature; 2008 Nov; 456(7221):480-4. PubMed ID: 19037311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic Biofoam: A Versatile Optically Active Material.
    Tian L; Luan J; Liu KK; Jiang Q; Tadepalli S; Gupta MK; Naik RR; Singamaneni S
    Nano Lett; 2016 Jan; 16(1):609-16. PubMed ID: 26630376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macroscopic tuning of nanomechanics: substrate bending for reversible control of frequency and quality factor of nanostring resonators.
    Verbridge SS; Shapiro DF; Craighead HG; Parpia JM
    Nano Lett; 2007 Jun; 7(6):1728-35. PubMed ID: 17497822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. All-semiconductor plasmonic nanoantennas for infrared sensing.
    Law S; Yu L; Rosenberg A; Wasserman D
    Nano Lett; 2013 Sep; 13(9):4569-74. PubMed ID: 23987983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.