These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 23484633)

  • 1. Tin-coated viral nanoforests as sodium-ion battery anodes.
    Liu Y; Xu Y; Zhu Y; Culver JN; Lundgren CA; Xu K; Wang C
    ACS Nano; 2013 Apr; 7(4):3627-34. PubMed ID: 23484633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sn-Cu nanocomposite anodes for rechargeable sodium-ion batteries.
    Lin YM; Abel PR; Gupta A; Goodenough JB; Heller A; Mullins CB
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8273-7. PubMed ID: 23957266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir.
    Zhu H; Jia Z; Chen Y; Weadock N; Wan J; Vaaland O; Han X; Li T; Hu L
    Nano Lett; 2013 Jul; 13(7):3093-100. PubMed ID: 23718129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional Sn-graphene anode for high-performance lithium-ion batteries.
    Wang C; Li Y; Chui YS; Wu QH; Chen X; Zhang W
    Nanoscale; 2013 Nov; 5(21):10599-604. PubMed ID: 24057017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanostructured bilayered vanadium oxide electrodes for rechargeable sodium-ion batteries.
    Tepavcevic S; Xiong H; Stamenkovic VR; Zuo X; Balasubramanian M; Prakapenka VB; Johnson CS; Rajh T
    ACS Nano; 2012 Jan; 6(1):530-8. PubMed ID: 22148185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrospun Sb/C fibers for a stable and fast sodium-ion battery anode.
    Zhu Y; Han X; Xu Y; Liu Y; Zheng S; Xu K; Hu L; Wang C
    ACS Nano; 2013 Jul; 7(7):6378-86. PubMed ID: 23802576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Four-layer tin-carbon nanotube yolk-shell materials for high-performance lithium-ion batteries.
    Chen P; Wu F; Wang Y
    ChemSusChem; 2014 May; 7(5):1407-14. PubMed ID: 24648261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pitaya-like Sn@C nanocomposites as high-rate and long-life anode for lithium-ion batteries.
    Zhang N; Zhao Q; Han X; Yang J; Chen J
    Nanoscale; 2014 Mar; 6(5):2827-32. PubMed ID: 24468961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduced graphite oxide/nano Sn: a superior composite anode material for rechargeable lithium-ion batteries.
    Nithya C; Gopukumar S
    ChemSusChem; 2013 May; 6(5):898-904. PubMed ID: 23512863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-pot synthesis of silicon nanoparticles trapped in ordered mesoporous carbon for use as an anode material in lithium-ion batteries.
    Park J; Kim GP; Nam I; Park S; Yi J
    Nanotechnology; 2013 Jan; 24(2):025602. PubMed ID: 23220858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrospun Cu/Sn/C nanocomposite fiber anodes with superior usable lifetime for lithium- and sodium-ion batteries.
    Kim JC; Kim DW
    Chem Asian J; 2014 Nov; 9(11):3313-8. PubMed ID: 25225075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembly of virus-structured high surface area nanomaterials and their application as battery electrodes.
    Royston E; Ghosh A; Kofinas P; Harris MT; Culver JN
    Langmuir; 2008 Feb; 24(3):906-12. PubMed ID: 18154364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tin and Tin Compounds for Sodium Ion Battery Anodes: Phase Transformations and Performance.
    Li Z; Ding J; Mitlin D
    Acc Chem Res; 2015 Jun; 48(6):1657-65. PubMed ID: 26046961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [100] Directed Cu-doped h-CoO nanorods: elucidation of the growth mechanism and application to lithium-ion batteries.
    Nam KM; Choi YC; Jung SC; Kim YI; Jo MR; Park SH; Kang YM; Han YK; Park JT
    Nanoscale; 2012 Jan; 4(2):473-7. PubMed ID: 22095097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free-standing and binder-free sodium-ion electrodes with ultralong cycle life and high rate performance based on porous carbon nanofibers.
    Li W; Zeng L; Yang Z; Gu L; Wang J; Liu X; Cheng J; Yu Y
    Nanoscale; 2014 Jan; 6(2):693-8. PubMed ID: 24356437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photothermally reduced graphene as high-power anodes for lithium-ion batteries.
    Mukherjee R; Thomas AV; Krishnamurthy A; Koratkar N
    ACS Nano; 2012 Sep; 6(9):7867-78. PubMed ID: 22881216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon Encapsulated Tin Oxide Nanocomposites: An Efficient Anode for High Performance Sodium-Ion Batteries.
    Kalubarme RS; Lee JY; Park CJ
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17226-37. PubMed ID: 26186401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformal coating of thin polymer electrolyte layer on nanostructured electrode materials for three-dimensional battery applications.
    Gowda SR; Reddy AL; Shaijumon MM; Zhan X; Ci L; Ajayan PM
    Nano Lett; 2011 Jan; 11(1):101-6. PubMed ID: 21133387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can the performance of graphene nanosheets for lithium storage in Li-ion batteries be predicted?
    C OA; Caballero Á; Morales J
    Nanoscale; 2012 Mar; 4(6):2083-92. PubMed ID: 22358220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High performance carbon nanotube-Si core-shell wires with a rationally structured core for lithium ion battery anodes.
    Fan Y; Zhang Q; Lu C; Xiao Q; Wang X; Tay BK
    Nanoscale; 2013 Feb; 5(4):1503-6. PubMed ID: 23334522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.