These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 23484766)

  • 1. Microplates based on liquid bridges between glass rods.
    Cheong BH; Lye JK; Backhous S; Liew OW; Ng TW
    J Colloid Interface Sci; 2013 May; 397():177-84. PubMed ID: 23484766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic interface technology based on stereolithography for glass-based lab-on-a-chips.
    Han SI; Han KH
    Methods Mol Biol; 2013; 949():169-84. PubMed ID: 23329443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface tension drawing of liquid from microplate capillary wells.
    Schwalb W; Ng TW; Lye JK; Liew OW; Cheong BH
    J Colloid Interface Sci; 2012 Jan; 365(1):314-9. PubMed ID: 21986403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pre-storage of liquid reagents in glass ampoules for DNA extraction on a fully integrated lab-on-a-chip cartridge.
    Hoffmann J; Mark D; Lutz S; Zengerle R; von Stetten F
    Lab Chip; 2010 Jun; 10(11):1480-4. PubMed ID: 20480115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-scribed transparency-based microplates.
    Li XY; Cheong BH; Somers A; Liew OW; Ng TW
    Langmuir; 2013 Jan; 29(2):849-55. PubMed ID: 23215012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integration of optical fiber light guide, fluorescence detection system, and multichannel disposable microfluidic chip.
    Irawan R; Tjin SC; Fang X; Fu CY
    Biomed Microdevices; 2007 Jun; 9(3):413-9. PubMed ID: 17473985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the liquid filling in capillary well microplates for analyte preconcentration.
    Yu Y; Wang X; Ng TW
    J Colloid Interface Sci; 2012 Jun; 376(1):269-73. PubMed ID: 22464034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transparency-based microplates for fluorescence quantification.
    Cheong BH; Diep V; Ng TW; Liew OW
    Anal Biochem; 2012 Mar; 422(1):39-45. PubMed ID: 22266206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lab-in-a-tube: on-chip integration of glass optofluidic ring resonators for label-free sensing applications.
    Harazim SM; Bolaños Quiñones VA; Kiravittaya S; Sanchez S; Schmidt OG
    Lab Chip; 2012 Aug; 12(15):2649-55. PubMed ID: 22739437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A glass fiber sheet-based electroosmotic lateral flow immunoassay for point-of-care testing.
    Oyama Y; Osaki T; Kamiya K; Kawano R; Honjoh T; Shibata H; Ide T; Takeuchi S
    Lab Chip; 2012 Dec; 12(24):5155-9. PubMed ID: 23114383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Green microfluidic devices made of corn proteins.
    Luecha J; Hsiao A; Brodsky S; Liu GL; Kokini JL
    Lab Chip; 2011 Oct; 11(20):3419-25. PubMed ID: 21918783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Miniaturized and integrated fluorescence detectors for microfluidic capillary electrophoresis devices.
    Kamei T
    Methods Mol Biol; 2009; 503():361-74. PubMed ID: 19151952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A portable flow-through fluorescent immunoassay lab-on-a-chip device using ZnO nanorod-decorated glass capillaries.
    Hu W; Lu Z; Liu Y; Chen T; Zhou X; Li CM
    Lab Chip; 2013 May; 13(9):1797-802. PubMed ID: 23483058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-contact acoustic trapping in circular cross-section glass capillaries: a numerical study.
    Gralinski I; Alan T; Neild A
    J Acoust Soc Am; 2012 Nov; 132(5):2978-87. PubMed ID: 23145585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual-wavelength fluorescent detection of particles on a novel microfluidic chip.
    Jiang H; Weng X; Li D
    Lab Chip; 2013 Mar; 13(5):843-50. PubMed ID: 23291857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time PCR array chip with capillary-driven sample loading and reactor sealing for point-of-care applications.
    Ramalingam N; Liu HB; Dai CC; Jiang Y; Wang H; Wang Q; M Hui K; Gong HQ
    Biomed Microdevices; 2009 Oct; 11(5):1007-20. PubMed ID: 19421862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance of SU-8 microchips as separation devices and comparison with glass microchips.
    Sikanen T; Heikkilä L; Tuomikoski S; Ketola RA; Kostiainen R; Franssila S; Kotiaho T
    Anal Chem; 2007 Aug; 79(16):6255-63. PubMed ID: 17636877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electromagnetic liquid pistons for capillarity-based pumping.
    Malouin BA; Vogel MJ; Olles JD; Cheng L; Hirsa AH
    Lab Chip; 2011 Feb; 11(3):393-7. PubMed ID: 21127823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compact fluorescence detection using in-fiber microchannels-its potential for lab-on-a-chip applications.
    Irawan R; Tay CM; Tjin SC; Fu CY
    Lab Chip; 2006 Aug; 6(8):1095-8. PubMed ID: 16874385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.