These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 23484768)

  • 41. Spreading and retraction as a function of drop size.
    Ghosh M; Stebe KJ
    Adv Colloid Interface Sci; 2010 Dec; 161(1-2):61-76. PubMed ID: 20817136
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The effect of nanoparticles on the liquid-gas surface tension of Bi2Te3 nanofluids.
    Vafaei S; Purkayastha A; Jain A; Ramanath G; Borca-Tasciuc T
    Nanotechnology; 2009 May; 20(18):185702. PubMed ID: 19420625
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Statistical mechanics of the disjoining pressure of a planar film.
    Henderson JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 1):051602. PubMed ID: 16383612
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Wetting behavior of multi-walled carbon nanotube nanofluids.
    Karthikeyan A; Coulombe S; Kietzig AM
    Nanotechnology; 2017 Mar; 28(10):105706. PubMed ID: 28106004
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The Molecular Spreading of Nonpolar Perfluoropolyether Films on Amorphous Carbon Surfaces.
    Kim MC; Phillips DM; Ma X; Jhon MS
    J Colloid Interface Sci; 2000 Aug; 228(2):405-409. PubMed ID: 10926481
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Disjoining pressure measurements using a microfabricated groove for a molecularly thin polymer liquid film on a solid surface.
    Fukuzawa K; Kawamura J; Deguchi T; Zhang H; Mitsuya Y
    J Chem Phys; 2004 Sep; 121(9):4358-63. PubMed ID: 15332987
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Disjoining Pressure in Partial Wetting on the Nanoscale.
    Samoila F; Sirghi L
    Langmuir; 2017 May; 33(21):5188-5196. PubMed ID: 28485609
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dynamic contact angle of water-based titanium oxide nanofluid.
    Radiom M; Yang C; Chan WK
    Nanoscale Res Lett; 2013 Jun; 8(1):282. PubMed ID: 23759071
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dynamics of Wetting.
    Chebbi R
    J Colloid Interface Sci; 2000 Sep; 229(1):155-164. PubMed ID: 10942553
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dewetting film dynamics inside a capillary using a micellar nanofluid.
    Zhang H; Nikolov A; Wasan D
    Langmuir; 2014 Aug; 30(31):9430-5. PubMed ID: 25050449
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Roller compaction process development and scale up using Johanson model calibrated with instrumented roll data.
    Nesarikar VV; Patel C; Early W; Vatsaraj N; Sprockel O; Jerzweski R
    Int J Pharm; 2012 Oct; 436(1-2):486-507. PubMed ID: 22721851
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spreading of triple line and dynamics of bubble growth inside nanoparticle dispersions on top of a substrate plate.
    Vafaei S; Wen D
    J Colloid Interface Sci; 2011 Oct; 362(2):285-91. PubMed ID: 21802094
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Review of non-reactive and reactive wetting of liquids on surfaces.
    Kumar G; Prabhu KN
    Adv Colloid Interface Sci; 2007 Jun; 133(2):61-89. PubMed ID: 17560842
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Emulsions stability, from dilute to dense emulsions -- role of drops deformation.
    Sanfeld A; Steinchen A
    Adv Colloid Interface Sci; 2008 Jul; 140(1):1-65. PubMed ID: 18313631
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interfacial interaction-driven rheological properties of quartz nanofluids from molecular dynamics simulations and density functional theory calculations.
    Lou Z; Cheng C; Cui Y; Tian H
    J Mol Model; 2022 Jun; 28(7):189. PubMed ID: 35708874
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The contact angle of nanofluids as thermophysical property.
    Hernaiz M; Alonso V; Estellé P; Wu Z; Sundén B; Doretti L; Mancin S; Çobanoğlu N; Karadeniz ZH; Garmendia N; Lasheras-Zubiate M; Hernández López L; Mondragón R; Martínez-Cuenca R; Barison S; Kujawska A; Turgut A; Amigo A; Huminic G; Huminic A; Kalus MR; Schroth KG; Buschmann MH
    J Colloid Interface Sci; 2019 Jul; 547():393-406. PubMed ID: 30974254
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Impact of nanoparticles on the CO
    Al-Anssari S; Barifcani A; Keshavarz A; Iglauer S
    J Colloid Interface Sci; 2018 Dec; 532():136-142. PubMed ID: 30077827
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of hydrophobicity on the stability of the wetting films of water formed on gold surfaces.
    Pan L; Jung S; Yoon RH
    J Colloid Interface Sci; 2011 Sep; 361(1):321-30. PubMed ID: 21664621
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Colloidal interactions in liquid CO2--a dry-cleaning perspective.
    Banerjee S; Sutanto S; Kleijn JM; van Roosmalen MJ; Witkamp GJ; Stuart MA
    Adv Colloid Interface Sci; 2012 Jul; 175():11-24. PubMed ID: 22538166
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The drop size in membrane emulsification determined from the balance of capillary and hydrodynamic forces.
    Christov NC; Danov KD; Danova DK; Kralchevsky PA
    Langmuir; 2008 Feb; 24(4):1397-410. PubMed ID: 17963414
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.