These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 23484822)
1. Entrapping of fullerenes, nanotubes, and inorganic nanoparticles by a DNA-chitosan complex: a method for nanomaterials removal. Zinchenko AA; Maeda N; Pu S; Murata S Environ Sci Technol; 2013 May; 47(9):4489-96. PubMed ID: 23484822 [TBL] [Abstract][Full Text] [Related]
2. Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes. Yan L; Zhao F; Li S; Hu Z; Zhao Y Nanoscale; 2011 Feb; 3(2):362-82. PubMed ID: 21157592 [TBL] [Abstract][Full Text] [Related]
3. Recent progress in the research of inorganic fullerene-like nanoparticles and inorganic nanotubes. Tenne R; Redlich M Chem Soc Rev; 2010 May; 39(5):1423-34. PubMed ID: 20419198 [TBL] [Abstract][Full Text] [Related]
4. Synthesis, size control and fluorescence studies of gold nanoparticles in carboxymethylated chitosan aqueous solutions. Huang L; Zhai M; Peng J; Xu L; Li J; Wei G J Colloid Interface Sci; 2007 Dec; 316(2):398-404. PubMed ID: 17707389 [TBL] [Abstract][Full Text] [Related]
5. Preparation and characterization of nanoparticles formed by chitosan-caseinate interactions. Anal AK; Tobiassen A; Flanagan J; Singh H Colloids Surf B Biointerfaces; 2008 Jun; 64(1):104-10. PubMed ID: 18294821 [TBL] [Abstract][Full Text] [Related]
6. Encapsulation of Mo₂C in MoS₂ inorganic fullerene-like nanoparticles and nanotubes. Wiesel I; Popovitz-Biro R; Tenne R Nanoscale; 2013 Feb; 5(4):1499-502. PubMed ID: 23338052 [TBL] [Abstract][Full Text] [Related]
7. Heparin/chitosan nanoparticle carriers prepared by polyelectrolyte complexation. Liu Z; Jiao Y; Liu F; Zhang Z J Biomed Mater Res A; 2007 Dec; 83(3):806-12. PubMed ID: 17559117 [TBL] [Abstract][Full Text] [Related]
8. Inhalation toxicity assessment of carbon-based nanoparticles. Morimoto Y; Horie M; Kobayashi N; Shinohara N; Shimada M Acc Chem Res; 2013 Mar; 46(3):770-81. PubMed ID: 22574947 [TBL] [Abstract][Full Text] [Related]
9. Glucose biosensor based on titanium dioxide-multiwall carbon nanotubes-chitosan composite and functionalized gold nanoparticles. Zhang M; Yuan R; Chai Y; Li W; Zhong H; Wang C Bioprocess Biosyst Eng; 2011 Nov; 34(9):1143-50. PubMed ID: 21720965 [TBL] [Abstract][Full Text] [Related]
10. Comparative photochemical reactivity of spherical and tubular fullerene nanoparticles in water under ultraviolet (UV) irradiation. Chae SR; Watanabe Y; Wiesner MR Water Res; 2011 Jan; 45(1):308-14. PubMed ID: 20708771 [TBL] [Abstract][Full Text] [Related]
11. One-pot synthesis of gold nanorods by ultrasonic irradiation: the effect of pH on the shape of the gold nanorods and nanoparticles. Okitsu K; Sharyo K; Nishimura R Langmuir; 2009 Jul; 25(14):7786-90. PubMed ID: 19545140 [TBL] [Abstract][Full Text] [Related]
12. Are diamond nanoparticles cytotoxic? Schrand AM; Huang H; Carlson C; Schlager JJ; Omacr Sawa E; Hussain SM; Dai L J Phys Chem B; 2007 Jan; 111(1):2-7. PubMed ID: 17201422 [TBL] [Abstract][Full Text] [Related]
13. Biocompatible inorganic fullerene-like molybdenum disulfide nanoparticles produced by pulsed laser ablation in water. Wu H; Yang R; Song B; Han Q; Li J; Zhang Y; Fang Y; Tenne R; Wang C ACS Nano; 2011 Feb; 5(2):1276-81. PubMed ID: 21230008 [TBL] [Abstract][Full Text] [Related]
14. DNA-mediated assembly of boron nitride nanotubes. Zhi C; Bando Y; Wang W; Tang C; Kuwahara H; Golberg D Chem Asian J; 2007 Dec; 2(12):1581-5. PubMed ID: 18041790 [TBL] [Abstract][Full Text] [Related]
15. Growth model for arc-deposited fullerene-like CNx nanoparticles. Veisz B; Radnóczi G Microsc Res Tech; 2005 Jun; 67(2):100-5. PubMed ID: 16037982 [TBL] [Abstract][Full Text] [Related]
16. Chitosan conjugates for DNA delivery. Paiva D; Ivanova G; Pereira Mdo C; Rocha S Phys Chem Chem Phys; 2013 Jul; 15(28):11893-9. PubMed ID: 23764856 [TBL] [Abstract][Full Text] [Related]
17. Organic/hybrid nanoparticles and single-walled carbon nanotubes: preparation methods and chiral applications. Alhassen H; Antony V; Ghanem A; Yajadda MM; Han ZJ; Ostrikov KK Chirality; 2014 Nov; 26(11):683-91. PubMed ID: 24811353 [TBL] [Abstract][Full Text] [Related]
18. Optical band gap modification of single-walled carbon nanotubes by encapsulated fullerenes. Okazaki T; Okubo S; Nakanishi T; Joung SK; Saito T; Otani M; Okada S; Bandow S; Iijima S J Am Chem Soc; 2008 Mar; 130(12):4122-8. PubMed ID: 18311979 [TBL] [Abstract][Full Text] [Related]
19. A biophysical perspective of understanding nanoparticles at large. Ke PC; Lamm MH Phys Chem Chem Phys; 2011 Apr; 13(16):7273-83. PubMed ID: 21394374 [TBL] [Abstract][Full Text] [Related]
20. Magnetic removal of dyes from aqueous solution using multi-walled carbon nanotubes filled with Fe2O3 particles. Qu S; Huang F; Yu S; Chen G; Kong J J Hazard Mater; 2008 Dec; 160(2-3):643-7. PubMed ID: 18430510 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]