BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 23484957)

  • 1. Expression profiling in glaucomatous human lamina cribrosa cells based on graph-clustering approach.
    Luo D; Liu K; Zhu B; Xu X
    Curr Eye Res; 2013 Jul; 38(7):767-73. PubMed ID: 23484957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of cyclical mechanical strain on extracellular matrix gene expression in human lamina cribrosa cells in vitro.
    Kirwan RP; Fenerty CH; Crean J; Wordinger RJ; Clark AF; O'Brien CJ
    Mol Vis; 2005 Sep; 11():798-810. PubMed ID: 16205625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transforming growth factor-beta-regulated gene transcription and protein expression in human GFAP-negative lamina cribrosa cells.
    Kirwan RP; Leonard MO; Murphy M; Clark AF; O'Brien CJ
    Glia; 2005 Dec; 52(4):309-24. PubMed ID: 16078232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential global and extra-cellular matrix focused gene expression patterns between normal and glaucomatous human lamina cribrosa cells.
    Kirwan RP; Wordinger RJ; Clark AF; O'Brien CJ
    Mol Vis; 2009; 15():76-88. PubMed ID: 19145252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of graded cyclic stretching on extracellular matrix-related gene expression profiles in cultured primary human lamina cribrosa cells.
    Quill B; Docherty NG; Clark AF; O'Brien CJ
    Invest Ophthalmol Vis Sci; 2011 Mar; 52(3):1908-15. PubMed ID: 21169532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Collagen type IV gene expression in human optic nerve heads with primary open angle glaucoma.
    Hernandez MR; Ye H; Roy S
    Exp Eye Res; 1994 Jul; 59(1):41-51. PubMed ID: 7835397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endothelin-1, endothelin A and B receptor expression and their pharmacological properties in GFAP negative human lamina cribrosa cells.
    Rao VR; Krishnamoorthy RR; Yorio T
    Exp Eye Res; 2007 Jun; 84(6):1115-24. PubMed ID: 17433294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antiangiogenic characteristics of astrocytes from optic nerve heads with primary open-angle glaucoma.
    Rudzinski MN; Chen L; Hernandez MR
    Arch Ophthalmol; 2008 May; 126(5):679-85. PubMed ID: 18474779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The pathogenic role of transforming growth factor-β2 in glaucomatous damage to the optic nerve head.
    Fuchshofer R
    Exp Eye Res; 2011 Aug; 93(2):165-9. PubMed ID: 20708611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pro-fibrotic pathway activation in trabecular meshwork and lamina cribrosa is the main driving force of glaucoma.
    Zhavoronkov A; Izumchenko E; Kanherkar RR; Teka M; Cantor C; Manaye K; Sidransky D; West MD; Makarev E; Csoka AB
    Cell Cycle; 2016 Jun; 15(12):1643-52. PubMed ID: 27229292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of lamina cribrosa in pseudoexfoliation syndrome using spectral-domain optical coherence tomography enhanced depth imaging.
    Kim S; Sung KR; Lee JR; Lee KS
    Ophthalmology; 2013 Sep; 120(9):1798-803. PubMed ID: 23622874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association of E-cadherin gene 3'-UTR C/T polymorphism with primary open angle glaucoma.
    Lin HJ; Tsai FJ; Hung P; Chen WC; Chen HY; Fan SS; Tsai SW
    Ophthalmic Res; 2006; 38(1):44-8. PubMed ID: 16276119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transient receptor potential channels TRPC1/TRPC6 regulate lamina cribrosa cell extracellular matrix gene transcription and proliferation.
    Irnaten M; O'Malley G; Clark AF; O'Brien CJ
    Exp Eye Res; 2020 Apr; 193():107980. PubMed ID: 32088241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased Substrate Stiffness Elicits a Myofibroblastic Phenotype in Human Lamina Cribrosa Cells.
    Liu B; Kilpatrick JI; Lukasz B; Jarvis SP; McDonnell F; Wallace DM; Clark AF; O'Brien CJ
    Invest Ophthalmol Vis Sci; 2018 Feb; 59(2):803-814. PubMed ID: 29392327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of differentially expressed glycogenes in trabecular meshwork of eyes with primary open-angle glaucoma.
    Diskin S; Kumar J; Cao Z; Schuman JS; Gilmartin T; Head SR; Panjwani N
    Invest Ophthalmol Vis Sci; 2006 Apr; 47(4):1491-9. PubMed ID: 16565384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene expression profiles of human trabecular meshwork cells induced by triamcinolone and dexamethasone.
    Fan BJ; Wang DY; Tham CC; Lam DS; Pang CP
    Invest Ophthalmol Vis Sci; 2008 May; 49(5):1886-97. PubMed ID: 18436822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ossification of the posterior longitudinal ligament related genes identification using microarray gene expression profiling and bioinformatics analysis.
    He H; Mao L; Xu P; Xi Y; Xu N; Xue M; Yu J; Ye X
    Gene; 2014 Jan; 533(2):515-9. PubMed ID: 24055420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypoxia regulated gene transcription in human optic nerve lamina cribrosa cells in culture.
    Kirwan RP; Felice L; Clark AF; O'Brien CJ; Leonard MO
    Invest Ophthalmol Vis Sci; 2012 Apr; 53(4):2243-55. PubMed ID: 22427556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of genes associated with primary open-angle glaucoma by bioinformatics approach.
    Qiu H; Zhu B; Ni S
    Int Ophthalmol; 2018 Feb; 38(1):19-28. PubMed ID: 28894971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide expression profiling of patients with primary open angle glaucoma.
    Colak D; Morales J; Bosley TM; Al-Bakheet A; AlYounes B; Kaya N; Abu-Amero KK
    Invest Ophthalmol Vis Sci; 2012 Aug; 53(9):5899-904. PubMed ID: 22871836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.