These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 23485255)

  • 1. Direct-bandgap epitaxial core-multishell nanopillar photovoltaics featuring subwavelength optical concentrators.
    Mariani G; Zhou Z; Scofield A; Huffaker DL
    Nano Lett; 2013 Apr; 13(4):1632-7. PubMed ID: 23485255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GaAs nanopillar-array solar cells employing in situ surface passivation.
    Mariani G; Scofield AC; Hung CH; Huffaker DL
    Nat Commun; 2013; 4():1497. PubMed ID: 23422665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patterned radial GaAs nanopillar solar cells.
    Mariani G; Wong PS; Katzenmeyer AM; Léonard F; Shapiro J; Huffaker DL
    Nano Lett; 2011 Jun; 11(6):2490-4. PubMed ID: 21604750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dry-Deposited Transparent Carbon Nanotube Film as Front Electrode in Colloidal Quantum Dot Solar Cells.
    Zhang X; Aitola K; Hägglund C; Kaskela A; Johansson MB; Sveinbjörnsson K; Kauppinen EI; Johansson EM
    ChemSusChem; 2017 Jan; 10(2):434-441. PubMed ID: 27873480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High mobility one- and two-dimensional electron systems in nanowire-based quantum heterostructures.
    Funk S; Royo M; Zardo I; Rudolph D; Morkötter S; Mayer B; Becker J; Bechtold A; Matich S; Döblinger M; Bichler M; Koblmüller G; Finley JJ; Bertoni A; Goldoni G; Abstreiter G
    Nano Lett; 2013; 13(12):6189-96. PubMed ID: 24274328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong enhancement of solar cell efficiency due to quantum dots with built-in charge.
    Sablon KA; Little JW; Mitin V; Sergeev A; Vagidov N; Reinhardt K
    Nano Lett; 2011 Jun; 11(6):2311-7. PubMed ID: 21545165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leveraging crystal anisotropy for deterministic growth of InAs quantum dots with narrow optical linewidths.
    Yakes MK; Yang L; Bracker AS; Sweeney TM; Brereton PG; Kim M; Kim CS; Vora PM; Park D; Carter SG; Gammon D
    Nano Lett; 2013 Oct; 13(10):4870-5. PubMed ID: 23987910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterojunction photovoltaics using GaAs nanowires and conjugated polymers.
    Ren S; Zhao N; Crawford SC; Tambe M; Bulović V; Gradecak S
    Nano Lett; 2011 Feb; 11(2):408-13. PubMed ID: 21171629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In(x)Ga(₁-x)As nanowires on silicon: one-dimensional heterogeneous epitaxy, bandgap engineering, and photovoltaics.
    Shin JC; Kim KH; Yu KJ; Hu H; Yin L; Ning CZ; Rogers JA; Zuo JM; Li X
    Nano Lett; 2011 Nov; 11(11):4831-8. PubMed ID: 21967406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array.
    Chou SY; Ding W
    Opt Express; 2013 Jan; 21 Suppl 1():A60-76. PubMed ID: 23389276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Depleted-heterojunction colloidal quantum dot solar cells.
    Pattantyus-Abraham AG; Kramer IJ; Barkhouse AR; Wang X; Konstantatos G; Debnath R; Levina L; Raabe I; Nazeeruddin MK; Grätzel M; Sargent EH
    ACS Nano; 2010 Jun; 4(6):3374-80. PubMed ID: 20496882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-efficiency nanostructured window GaAs solar cells.
    Liang D; Kang Y; Huo Y; Chen Y; Cui Y; Harris JS
    Nano Lett; 2013 Oct; 13(10):4850-6. PubMed ID: 24021024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High Performance Ultrathin GaAs Solar Cells Enabled with Heterogeneously Integrated Dielectric Periodic Nanostructures.
    Lee SM; Kwong A; Jung D; Faucher J; Biswas R; Shen L; Kang D; Lee ML; Yoon J
    ACS Nano; 2015 Oct; 9(10):10356-65. PubMed ID: 26376087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GaAs/AlGaAs core multishell nanowire-based light-emitting diodes on Si.
    Tomioka K; Motohisa J; Hara S; Hiruma K; Fukui T
    Nano Lett; 2010 May; 10(5):1639-44. PubMed ID: 20377199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Room temperature continuous wave operation of InAs/GaAs quantum dot photonic crystal nanocavity laser on silicon substrate.
    Tanabe K; Nomura M; Guimard D; Iwamoto S; Arakawa Y
    Opt Express; 2009 Apr; 17(9):7036-42. PubMed ID: 19399078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multilayer-Grown Ultrathin Nanostructured GaAs Solar Cells as a Cost-Competitive Materials Platform for III-V Photovoltaics.
    Gai B; Sun Y; Lim H; Chen H; Faucher J; Lee ML; Yoon J
    ACS Nano; 2017 Jan; 11(1):992-999. PubMed ID: 28075560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In(Ga)As quantum dot formation on group-III assisted catalyst-free InGaAs nanowires.
    Heiss M; Ketterer B; Uccelli E; Morante JR; Arbiol J; Fontcuberta i Morral A
    Nanotechnology; 2011 May; 22(19):195601. PubMed ID: 21430322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GaAs core--shell nanowires for photovoltaic applications.
    Czaban JA; Thompson DA; LaPierre RR
    Nano Lett; 2009 Jan; 9(1):148-54. PubMed ID: 19143502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bottom-up photonic crystal cavities formed by patterned III-V nanopillars.
    Scofield AC; Shapiro JN; Lin A; Williams AD; Wong PS; Liang BL; Huffaker DL
    Nano Lett; 2011 Jun; 11(6):2242-6. PubMed ID: 21591759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficiency enhancement in GaAs solar cells using self-assembled microspheres.
    Chang TH; Wu PH; Chen SH; Chan CH; Lee CC; Chen CC; Su YK
    Opt Express; 2009 Apr; 17(8):6519-24. PubMed ID: 19365476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.