These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 23485284)
1. Oscillator strengths of electronic excitations with response theory using phase including natural orbital functionals. van Meer R; Gritsenko OV; Giesbertz KJ; Baerends EJ J Chem Phys; 2013 Mar; 138(9):094114. PubMed ID: 23485284 [TBL] [Abstract][Full Text] [Related]
2. Excitation energies with linear response density matrix functional theory along the dissociation coordinate of an electron-pair bond in N-electron systems. van Meer R; Gritsenko OV; Baerends EJ J Chem Phys; 2014 Jan; 140(2):024101. PubMed ID: 24437859 [TBL] [Abstract][Full Text] [Related]
3. Response calculations based on an independent particle system with the exact one-particle density matrix: excitation energies. Giesbertz KJ; Gritsenko OV; Baerends EJ J Chem Phys; 2012 Mar; 136(9):094104. PubMed ID: 22401426 [TBL] [Abstract][Full Text] [Related]
4. The adiabatic approximation in time-dependent density matrix functional theory: response properties from dynamics of phase-including natural orbitals. Giesbertz KJ; Gritsenko OV; Baerends EJ J Chem Phys; 2010 Nov; 133(17):174119. PubMed ID: 21054018 [TBL] [Abstract][Full Text] [Related]
6. Excitation energies from range-separated time-dependent density and density matrix functional theory. Pernal K J Chem Phys; 2012 May; 136(18):184105. PubMed ID: 22583275 [TBL] [Abstract][Full Text] [Related]
7. Excitation energies with time-dependent density matrix functional theory: Singlet two-electron systems. Giesbertz KJ; Pernal K; Gritsenko OV; Baerends EJ J Chem Phys; 2009 Mar; 130(11):114104. PubMed ID: 19317528 [TBL] [Abstract][Full Text] [Related]
8. A long-range-corrected time-dependent density functional theory. Tawada Y; Tsuneda T; Yanagisawa S; Yanai T; Hirao K J Chem Phys; 2004 May; 120(18):8425-33. PubMed ID: 15267767 [TBL] [Abstract][Full Text] [Related]
9. Assessment of time-dependent density functional schemes for computing the oscillator strengths of benzene, phenol, aniline, and fluorobenzene. Miura M; Aoki Y; Champagne B J Chem Phys; 2007 Aug; 127(8):084103. PubMed ID: 17764225 [TBL] [Abstract][Full Text] [Related]
10. Density functional approximations for charge transfer excitations with intermediate spatial overlap. Li R; Zheng J; Truhlar DG Phys Chem Chem Phys; 2010 Oct; 12(39):12697-701. PubMed ID: 20733991 [TBL] [Abstract][Full Text] [Related]
11. Double excitation effect in non-adiabatic time-dependent density functional theory with an analytic construction of the exchange-correlation kernel in the common energy denominator approximation. Gritsenko OV; Baerends EJ Phys Chem Chem Phys; 2009 Jun; 11(22):4640-6. PubMed ID: 19475185 [TBL] [Abstract][Full Text] [Related]
12. Performance of the M11 and M11-L density functionals for calculations of electronic excitation energies by adiabatic time-dependent density functional theory. Peverati R; Truhlar DG Phys Chem Chem Phys; 2012 Aug; 14(32):11363-70. PubMed ID: 22801459 [TBL] [Abstract][Full Text] [Related]
13. Charge transfer, double and bond-breaking excitations with time-dependent density matrix functional theory. Giesbertz KJ; Baerends EJ; Gritsenko OV Phys Rev Lett; 2008 Jul; 101(3):033004. PubMed ID: 18764252 [TBL] [Abstract][Full Text] [Related]
14. TDDFT diagnostic testing and functional assessment for triazene chromophores. Peach MJ; Le Sueur CR; Ruud K; Guillaume M; Tozer DJ Phys Chem Chem Phys; 2009 Jun; 11(22):4465-70. PubMed ID: 19475164 [TBL] [Abstract][Full Text] [Related]
15. Time-dependent density functional study of the electronic potential energy curves and excitation spectrum of the oxygen molecule. Guan J; Wang F; Ziegler T; Cox H J Chem Phys; 2006 Jul; 125(4):44314. PubMed ID: 16942149 [TBL] [Abstract][Full Text] [Related]
16. Physical Meaning of Virtual Kohn-Sham Orbitals and Orbital Energies: An Ideal Basis for the Description of Molecular Excitations. van Meer R; Gritsenko OV; Baerends EJ J Chem Theory Comput; 2014 Oct; 10(10):4432-41. PubMed ID: 26588140 [TBL] [Abstract][Full Text] [Related]
17. Natural excitation orbitals from linear response theories: Time-dependent density functional theory, time-dependent Hartree-Fock, and time-dependent natural orbital functional theory. van Meer R; Gritsenko OV; Baerends EJ J Chem Phys; 2017 Jan; 146(4):044119. PubMed ID: 28147540 [TBL] [Abstract][Full Text] [Related]
18. Response calculations based on an independent particle system with the exact one-particle density matrix: polarizabilities. Giesbertz KJ; Gritsenko OV; Baerends EJ J Chem Phys; 2014 May; 140(18):18A517. PubMed ID: 24832325 [TBL] [Abstract][Full Text] [Related]
19. Calculation of atomic excitation energies by time-dependent density functional theory within a modified linear response. Hu C; Sugino O; Tateyama Y J Phys Condens Matter; 2009 Feb; 21(6):064229. PubMed ID: 21715931 [TBL] [Abstract][Full Text] [Related]
20. Valence excitation energies of alkenes, carbonyl compounds, and azabenzenes by time-dependent density functional theory: linear response of the ground state compared to collinear and noncollinear spin-flip TDDFT with the Tamm-Dancoff approximation. Isegawa M; Truhlar DG J Chem Phys; 2013 Apr; 138(13):134111. PubMed ID: 23574212 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]