BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 23485318)

  • 1. Modeling the temperature dependent interfacial tension between organic solvents and water using dissipative particle dynamics.
    Mayoral E; Goicochea AG
    J Chem Phys; 2013 Mar; 138(9):094703. PubMed ID: 23485318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of interfacial tension between an organic solvent and aqueous electrolyte solutions using electrostatic dissipative particle dynamics simulations.
    Mayoral E; Nahmad-Achar E
    J Chem Phys; 2012 Nov; 137(19):194701. PubMed ID: 23181326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiscale Modeling of the Effect of Pressure on the Interfacial Tension and Other Cohesion Parameters in Binary Mixtures.
    Mayoral E; Nahmad-Achar E
    J Phys Chem B; 2016 Mar; 120(9):2372-9. PubMed ID: 26840645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bead-bead interaction parameters in dissipative particle dynamics: relation to bead-size, solubility parameter, and surface tension.
    Maiti A; McGrother S
    J Chem Phys; 2004 Jan; 120(3):1594-601. PubMed ID: 15268286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-diffusion coefficients for water and organic solvents at high temperatures along the coexistence curve.
    Yoshida K; Matubayasi N; Nakahara M
    J Chem Phys; 2008 Dec; 129(21):214501. PubMed ID: 19063563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DPD Parameters Estimation for Simultaneously Simulating Water-Oil Interfaces and Aqueous Nonionic Surfactants.
    Khedr A; Striolo A
    J Chem Theory Comput; 2018 Dec; 14(12):6460-6471. PubMed ID: 30376315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coarse Grained Simulations of the Electrolytes at the Water-Air Interface from Many Body Dissipative Particle Dynamics.
    Ghoufi A; Malfreyt P
    J Chem Theory Comput; 2012 Mar; 8(3):787-91. PubMed ID: 26593339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulations of Interfacial Tension of Liquid-Liquid Ternary Mixtures Using Optimized Parametrization for Coarse-Grained Models.
    Steinmetz D; Creton B; Lachet V; Rousseau B; Nieto-Draghi C
    J Chem Theory Comput; 2018 Aug; 14(8):4438-4454. PubMed ID: 29906108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Semi-bottom-up coarse graining of water based on microscopic simulations.
    Gao L; Fang W
    J Chem Phys; 2011 Nov; 135(18):184101. PubMed ID: 22088046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite-size effects in dissipative particle dynamics simulations.
    Velázquez ME; Gama-Goicochea A; González-Melchor M; Neria M; Alejandre J
    J Chem Phys; 2006 Feb; 124(8):084104. PubMed ID: 16512705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microphase separation of diblock copolymer poly(styrene-b-isoprene): A dissipative particle dynamics simulation study.
    Li X; Guo J; Liu Y; Liang H
    J Chem Phys; 2009 Feb; 130(7):074908. PubMed ID: 19239317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polarizable coarse-grained models for molecular dynamics simulation of liquid cyclohexane.
    Szklarczyk OM; Arvaniti E; van Gunsteren WF
    J Comput Chem; 2015 Jun; 36(17):1311-21. PubMed ID: 26013466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coarse-Graining the Liquid-Liquid Interfaces with the MARTINI Force Field: How Is the Interfacial Tension Reproduced?
    Ndao M; Devémy J; Ghoufi A; Malfreyt P
    J Chem Theory Comput; 2015 Aug; 11(8):3818-28. PubMed ID: 26574463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New parametrization method for dissipative particle dynamics.
    Travis KP; Bankhead M; Good K; Owens SL
    J Chem Phys; 2007 Jul; 127(1):014109. PubMed ID: 17627339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A polarizable coarse-grained protein model for dissipative particle dynamics.
    Peter EK; Lykov K; Pivkin IV
    Phys Chem Chem Phys; 2015 Oct; 17(37):24452-61. PubMed ID: 26339692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mesoscale modeling of the water liquid-vapor interface: a surface tension calculation.
    Ghoufi A; Malfreyt P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):051601. PubMed ID: 21728541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coarse-grained potential models for phenyl-based molecules: I. Parametrization using experimental data.
    DeVane R; Klein ML; Chiu CC; Nielsen SO; Shinoda W; Moore PB
    J Phys Chem B; 2010 May; 114(19):6386-93. PubMed ID: 20426449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solvent dynamics in a reverse micellar water-pool: a spectroscopic investigation of DDAB-cyclohexane-water systems.
    Patra A; Luong TQ; Mitra RK; Havenith M
    Phys Chem Chem Phys; 2013 Jan; 15(3):930-9. PubMed ID: 23202988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calculation of the surface tension of cyclic and aromatic hydrocarbons from Monte Carlo simulations using an anisotropic united atom model (AUA).
    Biscay F; Ghoufi A; Lachet V; Malfreyt P
    Phys Chem Chem Phys; 2009 Aug; 11(29):6132-47. PubMed ID: 19606323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interfacial thermodynamics of water and six other liquid solvents.
    Pascal TA; Goddard WA
    J Phys Chem B; 2014 Jun; 118(22):5943-56. PubMed ID: 24820859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.