Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

992 related articles for article (PubMed ID: 23485365)

  • 1. A circuitry and biochemical basis for tuberous sclerosis symptoms: from epilepsy to neurocognitive deficits.
    Feliciano DM; Lin TV; Hartman NW; Bartley CM; Kubera C; Hsieh L; Lafourcade C; O'Keefe RA; Bordey A
    Int J Dev Neurosci; 2013 Nov; 31(7):667-78. PubMed ID: 23485365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tsc2 gene inactivation causes a more severe epilepsy phenotype than Tsc1 inactivation in a mouse model of tuberous sclerosis complex.
    Zeng LH; Rensing NR; Zhang B; Gutmann DH; Gambello MJ; Wong M
    Hum Mol Genet; 2011 Feb; 20(3):445-54. PubMed ID: 21062901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathogenesis of tuberous sclerosis subependymal giant cell astrocytomas: biallelic inactivation of TSC1 or TSC2 leads to mTOR activation.
    Chan JA; Zhang H; Roberts PS; Jozwiak S; Wieslawa G; Lewin-Kowalik J; Kotulska K; Kwiatkowski DJ
    J Neuropathol Exp Neurol; 2004 Dec; 63(12):1236-42. PubMed ID: 15624760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb.
    Tee AR; Manning BD; Roux PP; Cantley LC; Blenis J
    Curr Biol; 2003 Aug; 13(15):1259-68. PubMed ID: 12906785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The specificity and role of microglia in epileptogenesis in mouse models of tuberous sclerosis complex.
    Zhang B; Zou J; Han L; Beeler B; Friedman JL; Griffin E; Piao YS; Rensing NR; Wong M
    Epilepsia; 2018 Sep; 59(9):1796-1806. PubMed ID: 30079598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomic analysis of murine Tsc1-deficient neural stem progenitor cells.
    Chiaradia E; Miller I; Renzone G; Tognoloni A; Polchi A; De Marco F; Tancini B; Scaloni A; Magini A
    J Proteomics; 2023 Jul; 283-284():104928. PubMed ID: 37207814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Postnatal reduction of tuberous sclerosis complex 1 expression in astrocytes and neurons causes seizures in an age-dependent manner.
    Zou J; Zhang B; Gutmann DH; Wong M
    Epilepsia; 2017 Dec; 58(12):2053-2063. PubMed ID: 29023667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-cell Tsc1 knockout during corticogenesis generates tuber-like lesions and reduces seizure threshold in mice.
    Feliciano DM; Su T; Lopez J; Platel JC; Bordey A
    J Clin Invest; 2011 Apr; 121(4):1596-607. PubMed ID: 21403402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Timing of mTOR activation affects tuberous sclerosis complex neuropathology in mouse models.
    Magri L; Cominelli M; Cambiaghi M; Cursi M; Leocani L; Minicucci F; Poliani PL; Galli R
    Dis Model Mech; 2013 Sep; 6(5):1185-97. PubMed ID: 23744272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. mTOR Hyperactivity Levels Influence the Severity of Epilepsy and Associated Neuropathology in an Experimental Model of Tuberous Sclerosis Complex and Focal Cortical Dysplasia.
    Nguyen LH; Mahadeo T; Bordey A
    J Neurosci; 2019 Apr; 39(14):2762-2773. PubMed ID: 30700531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Bama miniature pig model of monoallelic TSC1 mutation for human tuberous sclerosis complex.
    Li X; Hu T; Liu J; Fang B; Geng X; Xiong Q; Zhang L; Jin Y; Liu X; Li L; Wang Y; Li R; Bai X; Yang H; Dai Y
    J Genet Genomics; 2020 Dec; 47(12):735-742. PubMed ID: 33612456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cerebral vascular and blood brain-barrier abnormalities in a mouse model of epilepsy and tuberous sclerosis complex.
    Guo D; Zhang B; Han L; Rensing NR; Wong M
    Epilepsia; 2024 Feb; 65(2):483-496. PubMed ID: 38049961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic target of rapamycin (mTOR) in tuberous sclerosis complex-associated epilepsy.
    Curatolo P
    Pediatr Neurol; 2015 Mar; 52(3):281-9. PubMed ID: 25591831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An update on the central nervous system manifestations of tuberous sclerosis complex.
    Cotter JA
    Acta Neuropathol; 2020 Apr; 139(4):613-624. PubMed ID: 30976976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuberous sclerosis and epilepsy: role of astrocytes.
    Wong M; Crino PB
    Glia; 2012 Aug; 60(8):1244-50. PubMed ID: 22438024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabotropic glutamate receptor-dependent long-term depression is impaired due to elevated ERK signaling in the ΔRG mouse model of tuberous sclerosis complex.
    Chévere-Torres I; Kaphzan H; Bhattacharya A; Kang A; Maki JM; Gambello MJ; Arbiser JL; Santini E; Klann E
    Neurobiol Dis; 2012 Mar; 45(3):1101-10. PubMed ID: 22198573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of mTOR signalling in neurogenesis, insights from tuberous sclerosis complex.
    Tee AR; Sampson JR; Pal DK; Bateman JM
    Semin Cell Dev Biol; 2016 Apr; 52():12-20. PubMed ID: 26849906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex.
    Zeng LH; Xu L; Gutmann DH; Wong M
    Ann Neurol; 2008 Apr; 63(4):444-53. PubMed ID: 18389497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biallelic Mutations in
    Winden KD; Sundberg M; Yang C; Wafa SMA; Dwyer S; Chen PF; Buttermore ED; Sahin M
    J Neurosci; 2019 Nov; 39(47):9294-9305. PubMed ID: 31591157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From mTOR to cognition: molecular and cellular mechanisms of cognitive impairments in tuberous sclerosis.
    Ehninger D; de Vries PJ; Silva AJ
    J Intellect Disabil Res; 2009 Oct; 53(10):838-51. PubMed ID: 19694899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 50.