These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 23485412)

  • 1. New atom probe approaches to studying segregation in nanocrystalline materials.
    Samudrala SK; Felfer PJ; Araullo-Peters VJ; Cao Y; Liao XZ; Cairney JM
    Ultramicroscopy; 2013 Sep; 132():158-63. PubMed ID: 23485412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Grain Boundary Specific Segregation in Nanocrystalline Fe(Cr).
    Zhou X; Yu XX; Kaub T; Martens RL; Thompson GB
    Sci Rep; 2016 Oct; 6():34642. PubMed ID: 27708360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nano-analysis of grain boundary and triple junction transport in nanocrystalline Ni/Cu.
    Reda Chellali M; Balogh Z; Schmitz G
    Ultramicroscopy; 2013 Sep; 132():164-70. PubMed ID: 23294555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interfacial excess of solutes across phase boundaries using atom probe microscopy.
    Theska F; Primig S
    Ultramicroscopy; 2024 Feb; 256():113885. PubMed ID: 38006714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping interfacial excess in atom probe data.
    Felfer P; Scherrer B; Demeulemeester J; Vandervorst W; Cairney JM
    Ultramicroscopy; 2015 Dec; 159 Pt 2():438-44. PubMed ID: 26346774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Segregation of solute elements at grain boundaries in an ultrafine grained Al-Zn-Mg-Cu alloy.
    Sha G; Yao L; Liao X; Ringer SP; Chao Duan Z; Langdon TG
    Ultramicroscopy; 2011 May; 111(6):500-5. PubMed ID: 21159437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-specific atomic scale analysis of solute segregation to a coincidence site lattice grain boundary.
    Taheri ML; Sebastian JT; Reed BW; Seidman DN; Rollett AD
    Ultramicroscopy; 2010 Mar; 110(4):278-84. PubMed ID: 20097006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interface segregation behavior in thermal aged austenitic precipitation strengthened stainless steel.
    Li H; Song H; Liu W; Xia S; Zhou B; Su C; Ding W
    Ultramicroscopy; 2015 Dec; 159 Pt 2():255-64. PubMed ID: 26142697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic-scale quantification of grain boundary segregation in nanocrystalline material.
    Herbig M; Raabe D; Li YJ; Choi P; Zaefferer S; Goto S
    Phys Rev Lett; 2014 Mar; 112(12):126103. PubMed ID: 24724663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of radiation-induced segregation in ultrafine-grained and conventional 316 austenitic stainless steels.
    Etienne A; Radiguet B; Cunningham NJ; Odette GR; Valiev R; Pareige P
    Ultramicroscopy; 2011 May; 111(6):659-63. PubMed ID: 21216102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elemental distribution, solute solubility and defect free volume in nanocrystalline restricted-equilibrium Cu-Ag alloys.
    Riedl T; Kirchner A; Eymann K; Shariq A; Schlesiger R; Schmitz G; Ruhnow M; Kieback B
    J Phys Condens Matter; 2013 Mar; 25(11):115401. PubMed ID: 23407023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic scale investigation of non-equilibrium segregation of boron in a quenched Mo-free martensitic steel.
    Li YJ; Ponge D; Choi P; Raabe D
    Ultramicroscopy; 2015 Dec; 159 Pt 2():240-7. PubMed ID: 25801276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atom probe tomography investigation of lath boundary segregation and precipitation in a maraging stainless steel.
    Thuvander M; Andersson M; Stiller K
    Ultramicroscopy; 2013 Sep; 132():265-70. PubMed ID: 23234833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and Development of Stable Nanocrystalline High-Entropy Alloy: Coupling Self-Stabilization and Solute Grain Boundary Segregation Effects.
    Adaan-Nyiak MA; Alam I; Jossou E; Hwang S; Kisslinger K; Gill SK; Tiamiyu AA
    Small; 2024 Jul; 20(27):e2309631. PubMed ID: 38312106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Automated Computational Approach for Complete In-Plane Compositional Interface Analysis by Atom Probe Tomography.
    Peng Z; Lu Y; Hatzoglou C; Kwiatkowski da Silva A; Vurpillot F; Ponge D; Raabe D; Gault B
    Microsc Microanal; 2019 Apr; 25(2):389-400. PubMed ID: 30722805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modification of Mo-Si alloy microstructure by small additions of Zr.
    Mousa M; Wanderka N; Timpel M; Singh S; Krüger M; Heilmaier M; Banhart J
    Ultramicroscopy; 2011 May; 111(6):706-10. PubMed ID: 21215523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Examinations of oxidation and sulfidation of grain boundaries in alloy 600 exposed to simulated pressurized water reactor primary water.
    Schreiber DK; Olszta MJ; Saxey DW; Kruska K; Moore KL; Lozano-Perez S; Bruemmer SM
    Microsc Microanal; 2013 Jun; 19(3):676-87. PubMed ID: 23590826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Correlative Study of Interfacial Segregation in a Cu-Doped TiNiSn Thermoelectric half-Heusler Alloy.
    Halpin JE; Jenkins B; Moody MP; Webster RWH; Bos JG; Bagot PAJ; MacLaren DA
    ACS Appl Electron Mater; 2022 Sep; 4(9):4446-4454. PubMed ID: 36185076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linking stress-driven microstructural evolution in nanocrystalline aluminium with grain boundary doping of oxygen.
    He MR; Samudrala SK; Kim G; Felfer PJ; Breen AJ; Cairney JM; Gianola DS
    Nat Commun; 2016 Apr; 7():11225. PubMed ID: 27071458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reflections on the Analysis of Interfaces and Grain Boundaries by Atom Probe Tomography.
    Jenkins BM; Danoix F; Gouné M; Bagot PAJ; Peng Z; Moody MP; Gault B
    Microsc Microanal; 2020 Apr; 26(2):247-257. PubMed ID: 32186276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.