These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 23485468)

  • 41. SPECT and fluorescence imaging of vulnerable atherosclerotic plaque with a vascular cell adhesion molecule 1 single-chain antibody fragment.
    Liu C; Zhang X; Song Y; Wang Y; Zhang F; Zhang Y; Zhang Y; Lan X
    Atherosclerosis; 2016 Nov; 254():263-270. PubMed ID: 27680307
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Absence of P-selectin delays fatty streak formation in mice.
    Johnson RC; Chapman SM; Dong ZM; Ordovas JM; Mayadas TN; Herz J; Hynes RO; Schaefer EJ; Wagner DD
    J Clin Invest; 1997 Mar; 99(5):1037-43. PubMed ID: 9062362
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Detection of atherosclerotic plaques in ApoE-deficient mice using (99m)Tc-duramycin.
    Liu Z; Larsen BT; Lerman LO; Gray BD; Barber C; Hedayat AF; Zhao M; Furenlid LR; Pak KY; Woolfenden JM
    Nucl Med Biol; 2016 Aug; 43(8):496-505. PubMed ID: 27236285
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparison of mAbs targeting epithelial cell adhesion molecule for the detection of prostate cancer lymph node metastases with multimodal contrast agents: quantitative small-animal PET/CT and NIRF.
    Hall MA; Pinkston KL; Wilganowski N; Robinson H; Ghosh P; Azhdarinia A; Vazquez-Arreguin K; Kolonin AM; Harvey BR; Sevick-Muraca EM
    J Nucl Med; 2012 Sep; 53(9):1427-37. PubMed ID: 22872743
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Molecular Imaging of Inflammation in a Mouse Model of Atherosclerosis Using a Zirconium-89-Labeled Probe.
    Ahmed M; Tegnebratt T; Tran TA; Lu L; Damberg P; Gisterå A; Tarnawski L; Bone D; Hedin U; Eriksson P; Holmin S; Gustafsson B; Caidahl K
    Int J Nanomedicine; 2020; 15():6137-6152. PubMed ID: 32884268
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Imaging the Cytokine Receptor CXCR4 in Atherosclerotic Plaques with the Radiotracer
    Hyafil F; Pelisek J; Laitinen I; Schottelius M; Mohring M; Döring Y; van der Vorst EP; Kallmayer M; Steiger K; Poschenrieder A; Notni J; Fischer J; Baumgartner C; Rischpler C; Nekolla SG; Weber C; Eckstein HH; Wester HJ; Schwaiger M
    J Nucl Med; 2017 Mar; 58(3):499-506. PubMed ID: 27789718
    [No Abstract]   [Full Text] [Related]  

  • 47. Molecular imaging of atherosclerotic plaques targeted to oxidized LDL receptor LOX-1 by SPECT/CT and magnetic resonance.
    Li D; Patel AR; Klibanov AL; Kramer CM; Ruiz M; Kang BY; Mehta JL; Beller GA; Glover DK; Meyer CH
    Circ Cardiovasc Imaging; 2010 Jul; 3(4):464-72. PubMed ID: 20442371
    [TBL] [Abstract][Full Text] [Related]  

  • 48.
    Creager MD; Hohl T; Hutcheson JD; Moss AJ; Schlotter F; Blaser MC; Park MA; Lee LH; Singh SA; Alcaide-Corral CJ; Tavares AAS; Newby DE; Kijewski MF; Aikawa M; Di Carli M; Dweck MR; Aikawa E
    Circ Cardiovasc Imaging; 2019 Jan; 12(1):e007835. PubMed ID: 30642216
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Akt2/LDLr double knockout mice display impaired glucose tolerance and develop more complex atherosclerotic plaques than LDLr knockout mice.
    Rensing KL; de Jager SC; Stroes ES; Vos M; Twickler MT; Dallinga-Thie GM; de Vries CJ; Kuiper J; Bot I; von der Thüsen JH
    Cardiovasc Res; 2014 Feb; 101(2):277-87. PubMed ID: 24220638
    [TBL] [Abstract][Full Text] [Related]  

  • 50. PET/CT and MR imaging biomarker of lipid-rich plaques using [64Cu]-labeled scavenger receptor (CD68-Fc).
    Bigalke B; Phinikaridou A; Andia ME; Cooper MS; Schuster A; Wurster T; Onthank D; Münch G; Blower P; Gawaz M; Nagel E; Botnar RM
    Int J Cardiol; 2014 Nov; 177(1):287-91. PubMed ID: 25499394
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Specific targeting of atherosclerotic plaques in ApoE(-/-) mice using a new Camelid sdAb binding the vulnerable plaque marker LOX-1.
    De Vos J; Mathijs I; Xavier C; Massa S; Wernery U; Bouwens L; Lahoutte T; Muyldermans S; Devoogdt N
    Mol Imaging Biol; 2014 Oct; 16(5):690-8. PubMed ID: 24687730
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Melanocortin overexpression limits diet-induced inflammation and atherosclerosis in LDLR
    Nuutinen S; Ailanen L; Savontaus E; Rinne P
    J Endocrinol; 2018 Mar; 236(3):111-123. PubMed ID: 29317531
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inhibition of soluble epoxide hydrolase alleviated atherosclerosis by reducing monocyte infiltration in Ldlr(-/-) mice.
    Li D; Liu Y; Zhang X; Lv H; Pang W; Sun X; Gan LM; Hammock BD; Ai D; Zhu Y
    J Mol Cell Cardiol; 2016 Sep; 98():128-37. PubMed ID: 27496380
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Targeting Elastase for Molecular Imaging of Early Atherosclerotic Lesions.
    Glinzer A; Ma X; Prakash J; Kimm MA; Lohöfer F; Kosanke K; Pelisek J; Thon MP; Vorlova S; Heinze KG; Eckstein HH; Gee MW; Ntziachristos V; Zernecke A; Wildgruber M
    Arterioscler Thromb Vasc Biol; 2017 Mar; 37(3):525-533. PubMed ID: 28062502
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hypertension and decreased aortic compliance due to reduced elastin amounts do not increase atherosclerotic plaque accumulation in Ldlr-/- mice.
    Maedeker JA; Stoka KV; Bhayani SA; Gardner WS; Bennett L; Procknow JD; Staiculescu MC; Walji TA; Craft CS; Wagenseil JE
    Atherosclerosis; 2016 Jun; 249():22-9. PubMed ID: 27062406
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Germ-free housing conditions do not affect aortic root and aortic arch lesion size of late atherosclerotic low-density lipoprotein receptor-deficient mice.
    Kiouptsi K; Pontarollo G; Todorov H; Braun J; Jäckel S; Koeck T; Bayer F; Karwot C; Karpi A; Gerber S; Jansen Y; Wild P; Ruf W; Daiber A; Van Der Vorst E; Weber C; Döring Y; Reinhardt C
    Gut Microbes; 2020 Nov; 11(6):1809-1823. PubMed ID: 32579470
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Detecting Vulnerable Atherosclerotic Plaques by
    Jiang L; Zhu H; Li Y; Wu X; Wang H; Cheng Z
    Mol Pharm; 2019 Mar; 16(3):1350-1357. PubMed ID: 30742442
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Imaging vulnerable plaques by targeting inflammation in atherosclerosis using fluorescent-labeled dual-ligand microparticles of iron oxide and magnetic resonance imaging.
    Chan JMS; Monaco C; Wylezinska-Arridge M; Tremoleda JL; Cole JE; Goddard M; Cheung MSH; Bhakoo KK; Gibbs RGJ
    J Vasc Surg; 2018 May; 67(5):1571-1583.e3. PubMed ID: 28648478
    [TBL] [Abstract][Full Text] [Related]  

  • 59. LOX-1 deletion decreases collagen accumulation in atherosclerotic plaque in low-density lipoprotein receptor knockout mice fed a high-cholesterol diet.
    Hu C; Dandapat A; Sun L; Chen J; Marwali MR; Romeo F; Sawamura T; Mehta JL
    Cardiovasc Res; 2008 Jul; 79(2):287-93. PubMed ID: 18453637
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Novel iRFP-Incorporated in vivo Murine Atherosclerosis Imaging System.
    Kulathunga K; Hamada M; Hiraishi Y; Otake M; Tran MTN; Cheng O; Tanaka J; Sakasai T; Sakaguchi S; Sugiyama Y; Fleischmann BK; Takahashi S; Miwa Y
    Sci Rep; 2018 Sep; 8(1):14515. PubMed ID: 30266983
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.