These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 23485858)

  • 1. Corrugated round fibers to improve cell adhesion and proliferation in tissue engineering scaffolds.
    Bettahalli NM; Arkesteijn IT; Wessling M; Poot AA; Stamatialis D
    Acta Biomater; 2013 Jun; 9(6):6928-35. PubMed ID: 23485858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique.
    Woodfield TB; Malda J; de Wijn J; Péters F; Riesle J; van Blitterswijk CA
    Biomaterials; 2004 Aug; 25(18):4149-61. PubMed ID: 15046905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fiber diameter and texture of electrospun PEOT/PBT scaffolds influence human mesenchymal stem cell proliferation and morphology, and the release of incorporated compounds.
    Moroni L; Licht R; de Boer J; de Wijn JR; van Blitterswijk CA
    Biomaterials; 2006 Oct; 27(28):4911-22. PubMed ID: 16762409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering.
    Wang J; Valmikinathan CM; Liu W; Laurencin CT; Yu X
    J Biomed Mater Res A; 2010 May; 93(2):753-62. PubMed ID: 19642211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solid freeform fabrication and in-vitro response of osteoblast cells of mPEG-PCL-mPEG bone scaffolds.
    Jiang CP; Chen YY; Hsieh MF; Lee HM
    Biomed Microdevices; 2013 Apr; 15(2):369-79. PubMed ID: 23324877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integration of hollow fiber membranes improves nutrient supply in three-dimensional tissue constructs.
    Bettahalli NM; Vicente J; Moroni L; Higuera GA; van Blitterswijk CA; Wessling M; Stamatialis DF
    Acta Biomater; 2011 Sep; 7(9):3312-24. PubMed ID: 21704736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic culturing of smooth muscle cells in tubular poly(trimethylene carbonate) scaffolds for vascular tissue engineering.
    Song Y; Wennink JW; Kamphuis MM; Sterk LM; Vermes I; Poot AA; Feijen J; Grijpma DW
    Tissue Eng Part A; 2011 Feb; 17(3-4):381-7. PubMed ID: 20807005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of biphasic polymeric 3-dimensional fiber deposited scaffolds for cartilage tissue engineering applications.
    Moroni L; Hendriks JA; Schotel R; de Wijn JR; van Blitterswijk CA
    Tissue Eng; 2007 Feb; 13(2):361-71. PubMed ID: 17504063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gravity spun polycaprolactone fibres for soft tissue engineering: interaction with fibroblasts and myoblasts in cell culture.
    Williamson MR; Adams EF; Coombes AG
    Biomaterials; 2006 Mar; 27(7):1019-26. PubMed ID: 16054685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrospun nanofibrous polycaprolactone scaffolds for tissue engineering of annulus fibrosus.
    Koepsell L; Zhang L; Neufeld D; Fong H; Deng Y
    Macromol Biosci; 2011 Mar; 11(3):391-9. PubMed ID: 21080441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering.
    Wang J; Yu X
    Acta Biomater; 2010 Aug; 6(8):3004-12. PubMed ID: 20144749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel method to improve vascularization of tissue engineered constructs with biodegradable fibers.
    Wong HK; Ivan Lam CR; Wen F; Mark Chong SK; Tan NS; Jerry C; Pal M; Tan LP
    Biofabrication; 2016 Jan; 8(1):015004. PubMed ID: 26741237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of scaffold composition and architecture on human nasal chondrocyte redifferentiation and cartilaginous matrix deposition.
    Miot S; Woodfield T; Daniels AU; Suetterlin R; Peterschmitt I; Heberer M; van Blitterswijk CA; Riesle J; Martin I
    Biomaterials; 2005 May; 26(15):2479-89. PubMed ID: 15585250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrically conductive nanofibers with highly oriented structures and their potential application in skeletal muscle tissue engineering.
    Chen MC; Sun YC; Chen YH
    Acta Biomater; 2013 Mar; 9(3):5562-72. PubMed ID: 23099301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional fiber-deposited PEOT/PBT copolymer scaffolds for tissue engineering: influence of porosity, molecular network mesh size, and swelling in aqueous media on dynamic mechanical properties.
    Moroni L; de Wijn JR; van Blitterswijk CA
    J Biomed Mater Res A; 2005 Dec; 75(4):957-65. PubMed ID: 16118789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanofibers coated on acellular tissue-engineered bovine pericardium supports differentiation of mesenchymal stem cells into endothelial cells for tissue engineering.
    Mathapati S; Bishi DK; Venugopal JR; Cherian KM; Guhathakurta S; Ramakrishna S; Verma RS
    Nanomedicine (Lond); 2014 Apr; 9(5):623-34. PubMed ID: 24827842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intra-scaffold continuous medium flow combines chondrocyte seeding and culture systems for tissue engineered trachea construction.
    Tan Q; Hillinger S; van Blitterswijk CA; Weder W
    Interact Cardiovasc Thorac Surg; 2009 Jan; 8(1):27-30. PubMed ID: 18550604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergic effects of nanofiber alignment and electroactivity on myoblast differentiation.
    Ku SH; Lee SH; Park CB
    Biomaterials; 2012 Sep; 33(26):6098-104. PubMed ID: 22681977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of surface modification on the mechanical and structural properties of nanofibrous poly(ε-caprolactone)/forsterite scaffold for tissue engineering applications.
    Kharaziha M; Fathi MH; Edris H
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4512-9. PubMed ID: 24094153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell adhesion and proliferation evaluation of SFF-based biodegradable scaffolds fabricated using a multi-head deposition system.
    Kim JY; Yoon JJ; Park EK; Kim DS; Kim SY; Cho DW
    Biofabrication; 2009 Mar; 1(1):015002. PubMed ID: 20811097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.