These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 23486198)

  • 1. Threshold mechanism for saccade initiation in frontal eye field and superior colliculus.
    Jantz JJ; Watanabe M; Everling S; Munoz DP
    J Neurophysiol; 2013 Jun; 109(11):2767-80. PubMed ID: 23486198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Composition and topographic organization of signals sent from the frontal eye field to the superior colliculus.
    Sommer MA; Wurtz RH
    J Neurophysiol; 2000 Apr; 83(4):1979-2001. PubMed ID: 10758109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. What the brain stem tells the frontal cortex. I. Oculomotor signals sent from superior colliculus to frontal eye field via mediodorsal thalamus.
    Sommer MA; Wurtz RH
    J Neurophysiol; 2004 Mar; 91(3):1381-402. PubMed ID: 14573558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linking express saccade occurance to stimulus properties and sensorimotor integration in the superior colliculus.
    Marino RA; Levy R; Munoz DP
    J Neurophysiol; 2015 Aug; 114(2):879-92. PubMed ID: 26063770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. What the brain stem tells the frontal cortex. II. Role of the SC-MD-FEF pathway in corollary discharge.
    Sommer MA; Wurtz RH
    J Neurophysiol; 2004 Mar; 91(3):1403-23. PubMed ID: 14573557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macaque frontal eye field input to saccade-related neurons in the superior colliculus.
    Helminski JO; Segraves MA
    J Neurophysiol; 2003 Aug; 90(2):1046-62. PubMed ID: 12736234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuronal correlates for preparatory set associated with pro-saccades and anti-saccades in the primate frontal eye field.
    Everling S; Munoz DP
    J Neurosci; 2000 Jan; 20(1):387-400. PubMed ID: 10627615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Progression in neuronal processing for saccadic eye movements from parietal cortex area lip to superior colliculus.
    Paré M; Wurtz RH
    J Neurophysiol; 2001 Jun; 85(6):2545-62. PubMed ID: 11387400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Saccade reaction times are influenced by caudate microstimulation following and prior to visual stimulus appearance.
    Watanabe M; Munoz DP
    J Cogn Neurosci; 2011 Jul; 23(7):1794-807. PubMed ID: 20666599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction between visual- and goal-related neuronal signals on the trajectories of saccadic eye movements.
    White BJ; Theeuwes J; Munoz DP
    J Cogn Neurosci; 2012 Mar; 24(3):707-17. PubMed ID: 22066585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Competition between saccade goals in the superior colliculus produces saccade curvature.
    McPeek RM; Han JH; Keller EL
    J Neurophysiol; 2003 May; 89(5):2577-90. PubMed ID: 12611995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of presaccadic activity in the frontal eye field by the superior colliculus.
    Berman RA; Joiner WM; Cavanaugh J; Wurtz RH
    J Neurophysiol; 2009 Jun; 101(6):2934-42. PubMed ID: 19321644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Saccade target selection in the superior colliculus during a visual search task.
    McPeek RM; Keller EL
    J Neurophysiol; 2002 Oct; 88(4):2019-34. PubMed ID: 12364525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dependence of saccade-related activity in the primate superior colliculus on visual target presence.
    Edelman JA; Goldberg ME
    J Neurophysiol; 2001 Aug; 86(2):676-91. PubMed ID: 11495942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discharge of saccade-related superior colliculus neurons during saccades accompanied by vergence.
    Walton MM; Mays LE
    J Neurophysiol; 2003 Aug; 90(2):1124-39. PubMed ID: 12904503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial relationships of visuomotor transformations in the superior colliculus map.
    Marino RA; Rodgers CK; Levy R; Munoz DP
    J Neurophysiol; 2008 Nov; 100(5):2564-76. PubMed ID: 18753320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-dimensional saccade-related population activity in superior colliculus in monkey.
    Anderson RW; Keller EL; Gandhi NJ; Das S
    J Neurophysiol; 1998 Aug; 80(2):798-817. PubMed ID: 9705470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of cortico-cortical and cortico-collicular signals for the generation of saccadic eye movements.
    Ferraina S; Paré M; Wurtz RH
    J Neurophysiol; 2002 Feb; 87(2):845-58. PubMed ID: 11826051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frontal Eye Field Inactivation Reduces Saccade Preparation in the Superior Colliculus but Does Not Alter How Preparatory Activity Relates to Saccades of a Given Latency.
    Dash S; Peel TR; Lomber SG; Corneil BD
    eNeuro; 2018; 5(2):. PubMed ID: 29766038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frontal Eye Field Inactivation Diminishes Superior Colliculus Activity, But Delayed Saccadic Accumulation Governs Reaction Time Increases.
    Peel TR; Dash S; Lomber SG; Corneil BD
    J Neurosci; 2017 Nov; 37(48):11715-11730. PubMed ID: 29089439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.