BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 23486253)

  • 1. Chlamydomonas reinhardtii thermal tolerance enhancement mediated by a mutualistic interaction with vitamin B12-producing bacteria.
    Xie B; Bishop S; Stessman D; Wright D; Spalding MH; Halverson LJ
    ISME J; 2013 Aug; 7(8):1544-55. PubMed ID: 23486253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutualistic interactions between vitamin B12 -dependent algae and heterotrophic bacteria exhibit regulation.
    Kazamia E; Czesnick H; Nguyen TT; Croft MT; Sherwood E; Sasso S; Hodson SJ; Warren MJ; Smith AG
    Environ Microbiol; 2012 Jun; 14(6):1466-76. PubMed ID: 22463064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into the evolution of vitamin B12 auxotrophy from sequenced algal genomes.
    Helliwell KE; Wheeler GL; Leptos KC; Goldstein RE; Smith AG
    Mol Biol Evol; 2011 Oct; 28(10):2921-33. PubMed ID: 21551270
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Kipkorir T; Mashabela GT; de Wet TJ; Koch A; Dawes SS; Wiesner L; Mizrahi V; Warner DF
    J Bacteriol; 2021 Mar; 203(7):. PubMed ID: 33468593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic adaptation of Ralstonia solanacearum during plant infection: a methionine biosynthesis case study.
    Plener L; Boistard P; González A; Boucher C; Genin S
    PLoS One; 2012; 7(5):e36877. PubMed ID: 22615832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unraveling vitamin B12-responsive gene regulation in algae.
    Helliwell KE; Scaife MA; Sasso S; Araujo AP; Purton S; Smith AG
    Plant Physiol; 2014 May; 165(1):388-97. PubMed ID: 24627342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sinorhizobium meliloti requires a cobalamin-dependent ribonucleotide reductase for symbiosis with its plant host.
    Taga ME; Walker GC
    Mol Plant Microbe Interact; 2010 Dec; 23(12):1643-54. PubMed ID: 20698752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Algae acquire vitamin B12 through a symbiotic relationship with bacteria.
    Croft MT; Lawrence AD; Raux-Deery E; Warren MJ; Smith AG
    Nature; 2005 Nov; 438(7064):90-3. PubMed ID: 16267554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fundamental shift in vitamin B12 eco-physiology of a model alga demonstrated by experimental evolution.
    Helliwell KE; Collins S; Kazamia E; Purton S; Wheeler GL; Smith AG
    ISME J; 2015 Jun; 9(6):1446-55. PubMed ID: 25526368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complementation of Cobalamin Auxotrophy in Synechococcus sp. Strain PCC 7002 and Validation of a Putative Cobalamin Riboswitch In Vivo.
    Pérez AA; Liu Z; Rodionov DA; Li Z; Bryant DA
    J Bacteriol; 2016 Oct; 198(19):2743-52. PubMed ID: 27457714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of vitamin B12 dependency in Saccharomyces cerevisiae.
    Lehner S; Boles E
    FEMS Yeast Res; 2023 Jan; 23():. PubMed ID: 36941127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conserved cobalamin acquisition protein 1 is essential for vitamin B12 uptake in both Chlamydomonas and Phaeodactylum.
    Sayer AP; Llavero-Pasquina M; Geisler K; Holzer A; Bunbury F; Mendoza-Ochoa GI; Lawrence AD; Warren MJ; Mehrshahi P; Smith AG
    Plant Physiol; 2024 Jan; 194(2):698-714. PubMed ID: 37864825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the onset of B
    Bunbury F; Deery E; Sayer AP; Bhardwaj V; Harrison EL; Warren MJ; Smith AG
    Environ Microbiol; 2022 Jul; 24(7):3134-3147. PubMed ID: 35593514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of cobalamin-independent and cobalamin-dependent methionine synthases from Escherichia coli: two solutions to the same chemical problem.
    González JC; Banerjee RV; Huang S; Sumner JS; Matthews RG
    Biochemistry; 1992 Jul; 31(26):6045-56. PubMed ID: 1339288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning and sequence analysis of the Escherichia coli metH gene encoding cobalamin-dependent methionine synthase and isolation of a tryptic fragment containing the cobalamin-binding domain.
    Banerjee RV; Johnston NL; Sobeski JK; Datta P; Matthews RG
    J Biol Chem; 1989 Aug; 264(23):13888-95. PubMed ID: 2668277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A synthetic module for the metH gene permits facile mutagenesis of the cobalamin-binding region of Escherichia coli methionine synthase: initial characterization of seven mutant proteins.
    Amaratunga M; Fluhr K; Jarrett JT; Drennan CL; Ludwig ML; Matthews RG; Scholten JD
    Biochemistry; 1996 Feb; 35(7):2453-63. PubMed ID: 8652589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the MetR regulatory system in vitamin B12-mediated repression of the Salmonella typhimurium metE gene.
    Wu WF; Urbanowski ML; Stauffer GV
    J Bacteriol; 1992 Jul; 174(14):4833-7. PubMed ID: 1385596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vitamin B12 metabolism in a photosynthesizing green alga, Chlamydomonas reinhardtii.
    Watanabe F; Nakano Y; Tamura Y; Yamanaka H
    Biochim Biophys Acta; 1991 Sep; 1075(1):36-41. PubMed ID: 1892864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biological Activity of Pseudovitamin B
    Bito T; Bito M; Hirooka T; Okamoto N; Harada N; Yamaji R; Nakano Y; Inui H; Watanabe F
    Molecules; 2020 Jul; 25(14):. PubMed ID: 32709013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chlamydomonas reinhardtii secretes compounds that mimic bacterial signals and interfere with quorum sensing regulation in bacteria.
    Teplitski M; Chen H; Rajamani S; Gao M; Merighi M; Sayre RT; Robinson JB; Rolfe BG; Bauer WD
    Plant Physiol; 2004 Jan; 134(1):137-46. PubMed ID: 14671013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.