These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1119 related articles for article (PubMed ID: 23486301)
1. Balance training improves static stability and gait in chronic incomplete spinal cord injury subjects: a pilot study. Tamburella F; Scivoletto G; Molinari M Eur J Phys Rehabil Med; 2013 Jun; 49(3):353-64. PubMed ID: 23486301 [TBL] [Abstract][Full Text] [Related]
2. Balance and ambulation improvements in individuals with chronic incomplete spinal cord injury using locomotor training-based rehabilitation. Harkema SJ; Schmidt-Read M; Lorenz DJ; Edgerton VR; Behrman AL Arch Phys Med Rehabil; 2012 Sep; 93(9):1508-17. PubMed ID: 21777905 [TBL] [Abstract][Full Text] [Related]
3. Relationship between ASIA examination and functional outcomes in the NeuroRecovery Network Locomotor Training Program. Buehner JJ; Forrest GF; Schmidt-Read M; White S; Tansey K; Basso DM Arch Phys Med Rehabil; 2012 Sep; 93(9):1530-40. PubMed ID: 22920450 [TBL] [Abstract][Full Text] [Related]
4. Ambulation and balance outcomes measure different aspects of recovery in individuals with chronic, incomplete spinal cord injury. Forrest GF; Lorenz DJ; Hutchinson K; Vanhiel LR; Basso DM; Datta S; Sisto SA; Harkema SJ Arch Phys Med Rehabil; 2012 Sep; 93(9):1553-64. PubMed ID: 22920452 [TBL] [Abstract][Full Text] [Related]
6. Longitudinal patterns of functional recovery in patients with incomplete spinal cord injury receiving activity-based rehabilitation. Lorenz DJ; Datta S; Harkema SJ Arch Phys Med Rehabil; 2012 Sep; 93(9):1541-52. PubMed ID: 22920451 [TBL] [Abstract][Full Text] [Related]
7. Training for mobility with exoskeleton robot in spinal cord injury patients: a pilot study. Sale P; Russo EF; Scarton A; Calabrò RS; Masiero S; Filoni S Eur J Phys Rehabil Med; 2018 Oct; 54(5):745-751. PubMed ID: 29517187 [TBL] [Abstract][Full Text] [Related]
8. Gait training in human spinal cord injury using electromechanical systems: effect of device type and patient characteristics. Benito-Penalva J; Edwards DJ; Opisso E; Cortes M; Lopez-Blazquez R; Murillo N; Costa U; Tormos JM; Vidal-Samsó J; Valls-Solé J; ; Medina J Arch Phys Med Rehabil; 2012 Mar; 93(3):404-12. PubMed ID: 22209475 [TBL] [Abstract][Full Text] [Related]
9. Supported treadmill ambulation training after spinal cord injury: a pilot study. Protas EJ; Holmes SA; Qureshy H; Johnson A; Lee D; Sherwood AM Arch Phys Med Rehabil; 2001 Jun; 82(6):825-31. PubMed ID: 11387590 [TBL] [Abstract][Full Text] [Related]
10. Against the odds: what to expect in rehabilitation of chronic spinal cord injury with a neurologically controlled Hybrid Assistive Limb exoskeleton. A subgroup analysis of 55 patients according to age and lesion level. Grasmücke D; Zieriacks A; Jansen O; Fisahn C; Sczesny-Kaiser M; Wessling M; Meindl RC; Schildhauer TA; Aach M Neurosurg Focus; 2017 May; 42(5):E15. PubMed ID: 28463613 [TBL] [Abstract][Full Text] [Related]
11. Activity-based therapy for recovery of walking in individuals with chronic spinal cord injury: results from a randomized clinical trial. Jones ML; Evans N; Tefertiller C; Backus D; Sweatman M; Tansey K; Morrison S Arch Phys Med Rehabil; 2014 Dec; 95(12):2239-46.e2. PubMed ID: 25102384 [TBL] [Abstract][Full Text] [Related]
12. Dynamic longitudinal evaluation of the utility of the Berg Balance Scale in individuals with motor incomplete spinal cord injury. Datta S; Lorenz DJ; Harkema SJ Arch Phys Med Rehabil; 2012 Sep; 93(9):1565-73. PubMed ID: 22920453 [TBL] [Abstract][Full Text] [Related]
13. A comparison of robotic walking therapy and conventional walking therapy in individuals with upper versus lower motor neuron lesions: a randomized controlled trial. Esclarín-Ruz A; Alcobendas-Maestro M; Casado-Lopez R; Perez-Mateos G; Florido-Sanchez MA; Gonzalez-Valdizan E; Martin JL Arch Phys Med Rehabil; 2014 Jun; 95(6):1023-31. PubMed ID: 24393781 [TBL] [Abstract][Full Text] [Related]
14. Impact of a limited trial of walking training using body weight support and a treadmill on the gait characteristics of an individual with chronic, incomplete spinal cord injury. Leahy TE Physiother Theory Pract; 2010 Oct; 26(7):483-9. PubMed ID: 20649496 [TBL] [Abstract][Full Text] [Related]
15. Robotic resistance treadmill training improves locomotor function in human spinal cord injury: a pilot study. Wu M; Landry JM; Schmit BD; Hornby TG; Yen SC Arch Phys Med Rehabil; 2012 May; 93(5):782-9. PubMed ID: 22459697 [TBL] [Abstract][Full Text] [Related]
16. Gait analysis following treadmill training with body weight support versus conventional physical therapy: a prospective randomized controlled single blind study. Lucareli PR; Lima MO; Lima FP; de Almeida JG; Brech GC; D'Andréa Greve JM Spinal Cord; 2011 Sep; 49(9):1001-7. PubMed ID: 21537338 [TBL] [Abstract][Full Text] [Related]
17. Robot-aided gait training in an individual with chronic spinal cord injury: a case study. Bishop L; Stein J; Wong CK J Neurol Phys Ther; 2012 Sep; 36(3):138-43. PubMed ID: 22854804 [TBL] [Abstract][Full Text] [Related]
18. Effects of Performance-Based Training on Gait and Balance in Individuals With Incomplete Spinal Cord Injury. Neville BT; Murray D; Rosen KB; Bryson CA; Collins JP; Guccione AA Arch Phys Med Rehabil; 2019 Oct; 100(10):1888-1893. PubMed ID: 31026461 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of a task-oriented client-centered upper extremity skilled performance training module in persons with tetraplegia. Spooren AI; Janssen-Potten YJ; Kerckhofs E; Bongers HM; Seelen HA Spinal Cord; 2011 Oct; 49(10):1049-54. PubMed ID: 21647166 [TBL] [Abstract][Full Text] [Related]
20. Activity-based therapy for recovery of walking in chronic spinal cord injury: results from a secondary analysis to determine responsiveness to therapy. Jones ML; Evans N; Tefertiller C; Backus D; Sweatman M; Tansey K; Morrison S Arch Phys Med Rehabil; 2014 Dec; 95(12):2247-52. PubMed ID: 25102385 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]