These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 23486514)

  • 1. Diabetic nephropathy: are there new and potentially promising therapies targeting oxygen biology?
    Miyata T; Suzuki N; van Ypersele de Strihou C
    Kidney Int; 2013 Oct; 84(4):693-702. PubMed ID: 23486514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypoxia. 1. Intracellular sensors for oxygen and oxidative stress: novel therapeutic targets.
    Miyata T; Takizawa S; van Ypersele de Strihou C
    Am J Physiol Cell Physiol; 2011 Feb; 300(2):C226-31. PubMed ID: 20980551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vitamin D activates the Nrf2-Keap1 antioxidant pathway and ameliorates nephropathy in diabetic rats.
    Nakai K; Fujii H; Kono K; Goto S; Kitazawa R; Kitazawa S; Hirata M; Shinohara M; Fukagawa M; Nishi S
    Am J Hypertens; 2014 Apr; 27(4):586-95. PubMed ID: 24025724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High glucose induces renal tubular epithelial injury via Sirt1/NF-kappaB/microR-29/Keap1 signal pathway.
    Zhou L; Xu DY; Sha WG; Shen L; Lu GY; Yin X; Wang MJ
    J Transl Med; 2015 Nov; 13():352. PubMed ID: 26552447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aldose reductase regulates miR-200a-3p/141-3p to coordinate Keap1-Nrf2, Tgfβ1/2, and Zeb1/2 signaling in renal mesangial cells and the renal cortex of diabetic mice.
    Wei J; Zhang Y; Luo Y; Wang Z; Bi S; Song D; Dai Y; Wang T; Qiu L; Wen L; Yuan L; Yang JY
    Free Radic Biol Med; 2014 Feb; 67():91-102. PubMed ID: 24161443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sodium butyrate activates NRF2 to ameliorate diabetic nephropathy possibly via inhibition of HDAC.
    Dong W; Jia Y; Liu X; Zhang H; Li T; Huang W; Chen X; Wang F; Sun W; Wu H
    J Endocrinol; 2017 Jan; 232(1):71-83. PubMed ID: 27799462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypoxia-induced erythropoietin production: a paradigm for oxygen-regulated gene expression.
    Stockmann C; Fandrey J
    Clin Exp Pharmacol Physiol; 2006 Oct; 33(10):968-79. PubMed ID: 17002676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NRF2 and Hypoxia-Inducible Factors: Key Players in the Redox Control of Systemic Iron Homeostasis.
    Duarte TL; Talbot NP; Drakesmith H
    Antioxid Redox Signal; 2021 Aug; 35(6):433-452. PubMed ID: 32791852
    [No Abstract]   [Full Text] [Related]  

  • 9. Roles of renal erythropoietin-producing (REP) cells in the maintenance of systemic oxygen homeostasis.
    Suzuki N; Yamamoto M
    Pflugers Arch; 2016 Jan; 468(1):3-12. PubMed ID: 26452589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Could physical exercises modulate Nrf2-Keap1 pathway in chronic kidney disease?
    Abreu CC; Cardozo LF; Mafra D
    Med Hypotheses; 2015 Jan; 84(1):44-6. PubMed ID: 25466297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the Keap1/Nrf2 pathway in neurodegenerative diseases.
    Yamazaki H; Tanji K; Wakabayashi K; Matsuura S; Itoh K
    Pathol Int; 2015 May; 65(5):210-9. PubMed ID: 25707882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discovery of caffeoylisocitric acid as a Keap1-dependent Nrf2 activator and its effects in mesangial cells under high glucose.
    Yao H; Zhang W; Yang F; Ai F; Du D; Li Y
    J Enzyme Inhib Med Chem; 2022 Dec; 37(1):178-188. PubMed ID: 34894983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acetyl-l-carnitine prevents homocysteine-induced suppression of Nrf2/Keap1 mediated antioxidation in human lens epithelial cells.
    Yang SP; Yang XZ; Cao GP
    Mol Med Rep; 2015 Jul; 12(1):1145-50. PubMed ID: 25776802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Omentin-1 protects renal function of mice with type 2 diabetic nephropathy via regulating miR-27a-Nrf2/Keap1 axis.
    Song J; Zhang H; Sun Y; Guo R; Zhong D; Xu R; Song M
    Biomed Pharmacother; 2018 Nov; 107():440-446. PubMed ID: 30103116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Keap1-Nrf2 system and diabetes mellitus.
    Uruno A; Yagishita Y; Yamamoto M
    Arch Biochem Biophys; 2015 Jan; 566():76-84. PubMed ID: 25528168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of the Keap1-Nrf2 pathway in cancer.
    Leinonen HM; Kansanen E; Pölönen P; Heinäniemi M; Levonen AL
    Adv Cancer Res; 2014; 122():281-320. PubMed ID: 24974185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Keap1-Nrf2 system as an in vivo sensor for electrophiles.
    Uruno A; Motohashi H
    Nitric Oxide; 2011 Aug; 25(2):153-60. PubMed ID: 21385624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Keap1-Nrf2 cell defense pathway--a promising therapeutic target?
    Copple IM
    Adv Pharmacol; 2012; 63():43-79. PubMed ID: 22776639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nrf2: friend and foe in preventing cigarette smoking-dependent lung disease.
    Müller T; Hengstermann A
    Chem Res Toxicol; 2012 Sep; 25(9):1805-24. PubMed ID: 22686525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time course of Keap1-Nrf2 pathway expression after experimental intracerebral haemorrhage: correlation with brain oedema and neurological deficit.
    Shang H; Yang D; Zhang W; Li T; Ren X; Wang X; Zhao W
    Free Radic Res; 2013 May; 47(5):368-75. PubMed ID: 23438812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.