These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
290 related articles for article (PubMed ID: 23486937)
1. Presynaptic calcium influx controls neurotransmitter release in part by regulating the effective size of the readily releasable pool. Thanawala MS; Regehr WG J Neurosci; 2013 Mar; 33(11):4625-33. PubMed ID: 23486937 [TBL] [Abstract][Full Text] [Related]
2. Developmental transformation of the release modality at the calyx of Held synapse. Fedchyshyn MJ; Wang LY J Neurosci; 2005 Apr; 25(16):4131-40. PubMed ID: 15843616 [TBL] [Abstract][Full Text] [Related]
3. Calcium microdomains near R-type calcium channels control the induction of presynaptic long-term potentiation at parallel fiber to purkinje cell synapses. Myoga MH; Regehr WG J Neurosci; 2011 Apr; 31(14):5235-43. PubMed ID: 21471358 [TBL] [Abstract][Full Text] [Related]
4. Inhibition [corrected] of olfactory receptor neuron input to olfactory bulb glomeruli mediated by suppression of presynaptic calcium influx. Wachowiak M; McGann JP; Heyward PM; Shao Z; Puche AC; Shipley MT J Neurophysiol; 2005 Oct; 94(4):2700-12. PubMed ID: 15917320 [TBL] [Abstract][Full Text] [Related]
5. Presynaptic Ca2+ channels and neurotransmitter release at the terminal of a mouse cortical neuron. Qian J; Noebels JL J Neurosci; 2001 Jun; 21(11):3721-8. PubMed ID: 11356859 [TBL] [Abstract][Full Text] [Related]
6. Modulation of transmission during trains at a cerebellar synapse. Kreitzer AC; Regehr WG J Neurosci; 2000 Feb; 20(4):1348-57. PubMed ID: 10662825 [TBL] [Abstract][Full Text] [Related]
7. Dominance of P/Q-type calcium channels in depolarization-induced presynaptic FM dye release in cultured hippocampal neurons. Nimmervoll B; Flucher BE; Obermair GJ Neuroscience; 2013 Dec; 253():330-40. PubMed ID: 24012836 [TBL] [Abstract][Full Text] [Related]
8. GABAB receptor-mediated presynaptic inhibition in guinea-pig hippocampus is caused by reduction of presynaptic Ca2+ influx. Wu LG; Saggau P J Physiol; 1995 Jun; 485 ( Pt 3)(Pt 3):649-57. PubMed ID: 7562607 [TBL] [Abstract][Full Text] [Related]
9. G-protein-coupled GABAB receptors inhibit Ca2+ channels and modulate transmitter release in descending turtle spinal cord terminal synapsing motoneurons. Castro A; Aguilar J; Elias D; Felix R; Delgado-Lezama R J Comp Neurol; 2007 Aug; 503(5):642-54. PubMed ID: 17559099 [TBL] [Abstract][Full Text] [Related]
10. Presynaptic Ca(2+) influx at a mouse central synapse with Ca(2+) channel subunit mutations. Qian J; Noebels JL J Neurosci; 2000 Jan; 20(1):163-70. PubMed ID: 10627593 [TBL] [Abstract][Full Text] [Related]
11. Synchronisation of neurotransmitter release during postnatal development in a calyceal presynaptic terminal of rat. Chuhma N; Koyano K; Ohmori H J Physiol; 2001 Jan; 530(Pt 1):93-104. PubMed ID: 11136861 [TBL] [Abstract][Full Text] [Related]
12. Distinct mechanisms of presynaptic inhibition at GABAergic synapses of the rat substantia nigra pars compacta. Giustizieri M; Bernardi G; Mercuri NB; Berretta N J Neurophysiol; 2005 Sep; 94(3):1992-2003. PubMed ID: 15944237 [TBL] [Abstract][Full Text] [Related]
13. Differential Ca2+-dependence of transmitter release mediated by P/Q- and N-type calcium channels at neonatal rat neuromuscular junctions. Rosato-Siri MD; Piriz J; Tropper BA; Uchitel OD Eur J Neurosci; 2002 Jun; 15(12):1874-80. PubMed ID: 12099893 [TBL] [Abstract][Full Text] [Related]
14. Presynaptic release probability and readily releasable pool size are regulated by two independent mechanisms during posttetanic potentiation at the calyx of Held synapse. Lee JS; Kim MH; Ho WK; Lee SH J Neurosci; 2008 Aug; 28(32):7945-53. PubMed ID: 18685020 [TBL] [Abstract][Full Text] [Related]
15. The neuromuscular junctions of the slow and the fast excitatory axon in the closer of the crab Eriphia spinifrons are endowed with different Ca2+ channel types and allow neuron-specific modulation of transmitter release by two neuropeptides. Rathmayer W; Djokaj S; Gaydukov A; Kreissl S J Neurosci; 2002 Feb; 22(3):708-17. PubMed ID: 11826100 [TBL] [Abstract][Full Text] [Related]
16. Modulation of transmitter release by presynaptic resting potential and background calcium levels. Awatramani GB; Price GD; Trussell LO Neuron; 2005 Oct; 48(1):109-21. PubMed ID: 16202712 [TBL] [Abstract][Full Text] [Related]
17. Control of cannabinoid CB1 receptor function on glutamate axon terminals by endogenous adenosine acting at A1 receptors. Hoffman AF; Laaris N; Kawamura M; Masino SA; Lupica CR J Neurosci; 2010 Jan; 30(2):545-55. PubMed ID: 20071517 [TBL] [Abstract][Full Text] [Related]
18. Agatoxin-IVA-sensitive calcium channels mediate the presynaptic and postsynaptic nicotinic activation of cardiac vagal neurons. Wang J; Irnaten M; Mendelowitz D J Neurophysiol; 2001 Jan; 85(1):164-8. PubMed ID: 11152716 [TBL] [Abstract][Full Text] [Related]
19. Phorbol esters potentiate evoked and spontaneous release by different presynaptic mechanisms. Waters J; Smith SJ J Neurosci; 2000 Nov; 20(21):7863-70. PubMed ID: 11050105 [TBL] [Abstract][Full Text] [Related]
20. N- and P/Q-type Ca2+ channels mediate transmitter release with a similar cooperativity at rat hippocampal autapses. Reid CA; Bekkers JM; Clements JD J Neurosci; 1998 Apr; 18(8):2849-55. PubMed ID: 9526002 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]