These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 23486971)

  • 1. The slow afterhyperpolarization: a target of β1-adrenergic signaling in hippocampus-dependent memory retrieval.
    Zhang L; Ouyang M; Ganellin CR; Thomas SA
    J Neurosci; 2013 Mar; 33(11):5006-16. PubMed ID: 23486971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Xamoterol impairs hippocampus-dependent emotional memory retrieval via Gi/o-coupled β2-adrenergic signaling.
    Schutsky K; Ouyang M; Thomas SA
    Learn Mem; 2011; 18(9):598-604. PubMed ID: 21878527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Norepinephrine and ß₁-adrenergic signaling facilitate activation of hippocampal CA1 pyramidal neurons during contextual memory retrieval.
    Murchison CF; Schutsky K; Jin SH; Thomas SA
    Neuroscience; 2011 May; 181():109-16. PubMed ID: 21377513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Properties of a T-type Ca2+channel-activated slow afterhyperpolarization in thalamic paraventricular nucleus and other thalamic midline neurons.
    Zhang L; Renaud LP; Kolaj M
    J Neurophysiol; 2009 Jun; 101(6):2741-50. PubMed ID: 19321637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stress and glucocorticoids impair memory retrieval via β2-adrenergic, Gi/o-coupled suppression of cAMP signaling.
    Schutsky K; Ouyang M; Castelino CB; Zhang L; Thomas SA
    J Neurosci; 2011 Oct; 31(40):14172-81. PubMed ID: 21976502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuromodulatory signaling in hippocampus-dependent memory retrieval.
    Thomas SA
    Hippocampus; 2015 Apr; 25(4):415-31. PubMed ID: 25475876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bidirectional pattern-specific plasticity of the slow afterhyperpolarization in rats: role for high-voltage activated Ca2+ channels and I h.
    Kaczorowski CC
    Eur J Neurosci; 2011 Dec; 34(11):1756-65. PubMed ID: 22098477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hippocalcin gates the calcium activation of the slow afterhyperpolarization in hippocampal pyramidal cells.
    Tzingounis AV; Kobayashi M; Takamatsu K; Nicoll RA
    Neuron; 2007 Feb; 53(4):487-93. PubMed ID: 17296551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blocking L-type calcium channels enhances long-term depression induced by low-frequency stimulation at hippocampal CA1 synapses.
    Udagawa R; Nakano M; Kato N
    Brain Res; 2006 Dec; 1124(1):28-36. PubMed ID: 17084819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Competitive and cooperative effects of Bay K8644 on the L-type calcium channel current inhibition by calcium channel antagonists.
    Zahradníková A; Minarovic I; Zahradník I
    J Pharmacol Exp Ther; 2007 Aug; 322(2):638-45. PubMed ID: 17475903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms underlying activation of the slow AHP in rat hippocampal neurons.
    Lima PA; Marrion NV
    Brain Res; 2007 May; 1150():74-82. PubMed ID: 17395164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Norepinephrine selectively reduces slow Ca2+- and Na+-mediated K+ currents in cat neocortical neurons.
    Foehring RC; Schwindt PC; Crill WE
    J Neurophysiol; 1989 Feb; 61(2):245-56. PubMed ID: 2918353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of hippocampal pyramidal cell excitability by the novel selective slow-afterhyperpolarization channel blocker 3-(triphenylmethylaminomethyl)pyridine (UCL2077).
    Shah MM; Javadzadeh-Tabatabaie M; Benton DC; Ganellin CR; Haylett DG
    Mol Pharmacol; 2006 Nov; 70(5):1494-502. PubMed ID: 16877678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epac signaling is required for hippocampus-dependent memory retrieval.
    Ouyang M; Zhang L; Zhu JJ; Schwede F; Thomas SA
    Proc Natl Acad Sci U S A; 2008 Aug; 105(33):11993-7. PubMed ID: 18687890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Slow afterhyperpolarization governs the development of NMDA receptor-dependent afterdepolarization in CA1 pyramidal neurons during synaptic stimulation.
    Wu WW; Chan CS; Disterhoft JF
    J Neurophysiol; 2004 Oct; 92(4):2346-56. PubMed ID: 15190096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. L-type Ca(2+) currents overlapping threshold Na(+) currents: could they be responsible for the "slip-mode" phenomenon in cardiac myocytes?
    Piacentino V; Gaughan JP; Houser SR
    Circ Res; 2002 Mar; 90(4):435-42. PubMed ID: 11884373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein kinase A mediates the modulation of the slow Ca(2+)-dependent K(+) current, I(sAHP), by the neuropeptides CRF, VIP, and CGRP in hippocampal pyramidal neurons.
    Haug T; Storm JF
    J Neurophysiol; 2000 Apr; 83(4):2071-9. PubMed ID: 10758117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kisspeptin inhibits a slow afterhyperpolarization current via protein kinase C and reduces spike frequency adaptation in GnRH neurons.
    Zhang C; Rønnekleiv OK; Kelly MJ
    Am J Physiol Endocrinol Metab; 2013 Jun; 304(11):E1237-44. PubMed ID: 23548613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. β1-Adrenergic receptors activate two distinct signaling pathways in striatal neurons.
    Meitzen J; Luoma JI; Stern CM; Mermelstein PG
    J Neurochem; 2011 Mar; 116(6):984-95. PubMed ID: 21143600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. L-type calcium channels in vascular smooth muscle cells from spontaneously hypertensive rats: effects of calcium agonist and antagonist.
    Kubo T; Taguchi K; Ueda M
    Hypertens Res; 1998 Mar; 21(1):33-7. PubMed ID: 9582106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.