BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 23487307)

  • 21. Role of the cysteine protease interpain A of Prevotella intermedia in breakdown and release of haem from haemoglobin.
    Byrne DP; Wawrzonek K; Jaworska A; Birss AJ; Potempa J; Smalley JW
    Biochem J; 2009 Dec; 425(1):257-64. PubMed ID: 19814715
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Purification and characterization of an extracellular heme-binding protein, HasA, involved in heme iron acquisition.
    Izadi N; Henry Y; Haladjian J; Goldberg ME; Wandersman C; Delepierre M; Lecroisey A
    Biochemistry; 1997 Jun; 36(23):7050-7. PubMed ID: 9188703
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Haem recognition by a Staphylococcus aureus NEAT domain.
    Grigg JC; Vermeiren CL; Heinrichs DE; Murphy ME
    Mol Microbiol; 2007 Jan; 63(1):139-49. PubMed ID: 17229211
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of a conserved Moraxella catarrhalis haemoglobin-utilization protein, MhuA.
    Furano K; Luke NR; Howlett AJ; Campagnari AA
    Microbiology (Reading); 2005 Apr; 151(Pt 4):1151-1158. PubMed ID: 15817782
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A coupling mechanism to inter-relate regulatory with haem-haem interactions of haemoglobin.
    Bennun A
    Biomed Biochim Acta; 1987; 46(2-3):S314-9. PubMed ID: 3593312
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Haemophore-mediated signalling in Serratia marcescens: a new mode of regulation for an extra cytoplasmic function (ECF) sigma factor involved in haem acquisition.
    Biville F; Cwerman H; Létoffé S; Rossi MS; Drouet V; Ghigo JM; Wandersman C
    Mol Microbiol; 2004 Aug; 53(4):1267-77. PubMed ID: 15306027
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural basis for trypanosomal haem acquisition and susceptibility to the host innate immune system.
    Stødkilde K; Torvund-Jensen M; Moestrup SK; Andersen CB
    Nat Commun; 2014 Nov; 5():5487. PubMed ID: 25410714
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An endocytic mechanism for haemoglobin-iron acquisition in Candida albicans.
    Weissman Z; Shemer R; Conibear E; Kornitzer D
    Mol Microbiol; 2008 Jul; 69(1):201-17. PubMed ID: 18466294
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The
    Macdonald R; Cascio D; Collazo MJ; Phillips M; Clubb RT
    J Biol Chem; 2018 Nov; 293(47):18365-18377. PubMed ID: 30301765
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Three highly homologous membrane-bound lipoproteins participate in oligopeptide transport by the Ami system of the gram-positive Streptococcus pneumoniae.
    Alloing G; de Philip P; Claverys JP
    J Mol Biol; 1994 Aug; 241(1):44-58. PubMed ID: 8051706
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural biology of heme binding in the Staphylococcus aureus Isd system.
    Grigg JC; Ukpabi G; Gaudin CF; Murphy ME
    J Inorg Biochem; 2010 Mar; 104(3):341-8. PubMed ID: 19853304
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Acquisition of haemoglobin-bound iron by Histophilus somni.
    Tremblay YD; Bahrami F; Niven DF
    Vet Microbiol; 2006 Apr; 114(1-2):104-14. PubMed ID: 16376031
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Shr of group A streptococcus is a new type of composite NEAT protein involved in sequestering haem from methaemoglobin.
    Ouattara M; Cunha EB; Li X; Huang YS; Dixon D; Eichenbaum Z
    Mol Microbiol; 2010 Nov; 78(3):739-56. PubMed ID: 20807204
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of a haem-utilization protein (Hup) in Haemophilus influenzae.
    Morton DJ; Smith A; Ren Z; Madore LL; VanWagoner TM; Seale TW; Whitby PW; Stull TL
    Microbiology (Reading); 2004 Dec; 150(Pt 12):3923-33. PubMed ID: 15583146
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of functionally important regions of a haemoglobin receptor from Neisseria meningitidis.
    Perkins-Balding D; Baer MT; Stojiljkovic I
    Microbiology (Reading); 2003 Dec; 149(Pt 12):3423-3435. PubMed ID: 14663076
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Emerging strategies in microbial haem capture.
    Genco CA; Dixon DW
    Mol Microbiol; 2001 Jan; 39(1):1-11. PubMed ID: 11123683
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-affinity binding of the staphylococcal HarA protein to haptoglobin and hemoglobin involves a domain with an antiparallel eight-stranded beta-barrel fold.
    Dryla A; Hoffmann B; Gelbmann D; Giefing C; Hanner M; Meinke A; Anderson AS; Koppensteiner W; Konrat R; von Gabain A; Nagy E
    J Bacteriol; 2007 Jan; 189(1):254-64. PubMed ID: 17041047
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Putative copper- and zinc-binding motifs in Streptococcus pneumoniae identified by immobilized metal affinity chromatography and mass spectrometry.
    Sun X; Xiao CL; Ge R; Yin X; Li H; Li N; Yang X; Zhu Y; He X; He QY
    Proteomics; 2011 Aug; 11(16):3288-98. PubMed ID: 21751346
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ligand delivery by haem carrier proteins: the binding of Serratia marcescens haemophore to its outer membrane receptor is mediated by two distinct peptide regions.
    Létoffé S; Debarbieux L; Izadi N; Delepelaire P; Wandersman C
    Mol Microbiol; 2003 Oct; 50(1):77-88. PubMed ID: 14507365
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cloning and identification of a gene coding for a 26-kDa hemoglobin-binding protein from Entamoeba histolytica.
    Cruz-Castañeda A; Hernández-Sánchez J; Olivares-Trejo JJ
    Biochimie; 2009 Mar; 91(3):383-9. PubMed ID: 19041684
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.