BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 23487991)

  • 1. Natural revegetation of alkaline tailing heaps at Taxco, Guerrero, Mexico.
    Cortés-Jiménez EV; Mugica-Alvarez V; González-Chávez MC; Carrillo-González R; Martínez Gordillo M; Vaca Mier M
    Int J Phytoremediation; 2013; 15(2):127-41. PubMed ID: 23487991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Initial studies for the phytostabilization of a mine tailing from the Cartagena-La Union Mining District (SE Spain).
    Conesa HM; Faz A; Arnaldos R
    Chemosphere; 2007 Jan; 66(1):38-44. PubMed ID: 16820188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Abandoned Copper Mining Site in Cyprus and Assessment of Metal Concentrations in Plants and Soil.
    Baycu G; Tolunay D; Ozden H; Csatari I; Karadag S; Agba T; Rognes SE
    Int J Phytoremediation; 2015; 17(7):622-31. PubMed ID: 25976876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wild flora of mine tailings: perspectives for use in phytoremediation of potentially toxic elements in a semi-arid region in Mexico.
    Sánchez-López AS; Del Carmen A González-Chávez M; Carrillo-González R; Vangronsveld J; Díaz-Garduño M
    Int J Phytoremediation; 2015; 17(1-6):476-84. PubMed ID: 25495938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Riparian plants on mine runoff in Zimapan, Hidalgo, Mexico: Useful for phytoremediation?
    Carmona-Chit E; Carrillo-González R; González-Chávez Mdel C; Vibrans H; Yáñez-Espinosa L; Delgado-Alvarado A
    Int J Phytoremediation; 2016 Sep; 18(9):861-8. PubMed ID: 26939994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal accumulation in wild plants surrounding mining wastes.
    González RC; González-Chávez MC
    Environ Pollut; 2006 Nov; 144(1):84-92. PubMed ID: 16631286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential of castor bean (Ricinus communis L.) for phytoremediation of mine tailings and oil production.
    Ruiz Olivares A; Carrillo-González R; González-Chávez Mdel C; Soto Hernández RM
    J Environ Manage; 2013 Jan; 114():316-23. PubMed ID: 23171605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of arbuscular mycorrhizal fungi status and heavy metal accumulation characteristics of tree species in a lead-zinc mine area: potential applications for phytoremediation.
    Yang Y; Liang Y; Ghosh A; Song Y; Chen H; Tang M
    Environ Sci Pollut Res Int; 2015 Sep; 22(17):13179-93. PubMed ID: 25929455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability.
    Chehregani A; Noori M; Yazdi HL
    Ecotoxicol Environ Saf; 2009 Jul; 72(5):1349-53. PubMed ID: 19386362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uptake of heavy metals by native species growing in a mining area in Sardinia, Italy: discovering native flora for phytoremediation.
    Barbafieri M; Dadea C; Tassi E; Bretzel F; Fanfani L
    Int J Phytoremediation; 2011; 13(10):985-97. PubMed ID: 21972566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Speciation and bioavailability of heavy metals in paddy soil irrigated by acid mine drainage].
    Xu C; Xia BC; Wu HN; Lin XF; Qiu RL
    Huan Jing Ke Xue; 2009 Mar; 30(3):900-6. PubMed ID: 19432348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site.
    Yoon J; Cao X; Zhou Q; Ma LQ
    Sci Total Environ; 2006 Sep; 368(2-3):456-64. PubMed ID: 16600337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heavy metal accumulation and tolerance in plants from mine tailings of the semiarid Cartagena-La Unión mining district (SE Spain).
    Conesa HM; Faz A; Arnaldos R
    Sci Total Environ; 2006 Jul; 366(1):1-11. PubMed ID: 16499952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China).
    Liu H; Probst A; Liao B
    Sci Total Environ; 2005 Mar; 339(1-3):153-66. PubMed ID: 15740766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recovering a copper mine soil using organic amendments and phytomanagement with Brassica juncea L.
    Rodríguez-Vila A; Covelo EF; Forján R; Asensio V
    J Environ Manage; 2015 Jan; 147():73-80. PubMed ID: 25262389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of major constraints to revegetation of lead/zinc mine tailings using bioassay techniques.
    Ye ZH; Shu WS; Zhang ZQ; Lan CY; Wong MH
    Chemosphere; 2002 Jun; 47(10):1103-11. PubMed ID: 12137044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zinc mine.
    Li J; Xie ZM; Zhu YG; Naidu R
    J Environ Sci (China); 2005; 17(6):881-5. PubMed ID: 16465871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lead, zinc, and cadmium uptake, accumulation, and phytoremediation by plants growing around Tang-e Douzan lead-zinc mine, Iran.
    Hesami R; Salimi A; Ghaderian SM
    Environ Sci Pollut Res Int; 2018 Mar; 25(9):8701-8714. PubMed ID: 29322395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heavy metal distribution and chemical speciation in tailings and soils around a Pb-Zn mine in Spain.
    Rodríguez L; Ruiz E; Alonso-Azcárate J; Rincón J
    J Environ Manage; 2009 Feb; 90(2):1106-16. PubMed ID: 18572301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioaccumulation of thallium and other trace metals in Biscutella laevigata nearby a decommissioned zinc-lead mine (Northeastern Italian Alps).
    Pavoni E; Petranich E; Adami G; Baracchini E; Crosera M; Emili A; Lenaz D; Higueras P; Covelli S
    J Environ Manage; 2017 Jan; 186(Pt 2):214-224. PubMed ID: 27484741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.