BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 23487996)

  • 1. Evaluation of three ornamental plants for phytoremediation of Pb-contamined soil.
    Cui S; Zhang T; Zhao S; Li P; Zhou Q; Zhang Q; Han Q
    Int J Phytoremediation; 2013; 15(4):299-306. PubMed ID: 23487996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Screening ornamental plants to identify potential Cd hyperaccumulators for bioremediation.
    Wu M; Luo Q; Liu S; Zhao Y; Long Y; Pan Y
    Ecotoxicol Environ Saf; 2018 Oct; 162():35-41. PubMed ID: 29960120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal phytoremediation by the halophyte Limoniastrum monopetalum (L.) Boiss: two contrasting ecotypes.
    Manousaki E; Galanaki K; Papadimitriou L; Kalogerakis N
    Int J Phytoremediation; 2014; 16(7-12):755-69. PubMed ID: 24933883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lead uptake and translocation by willows in pot and field experiments.
    Zhivotovsky OP; Kuzovkina YA; Schulthess CP; Morris T; Pettinelli D
    Int J Phytoremediation; 2011 Sep; 13(8):731-49. PubMed ID: 21972515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoremediation of lead (Pb) and arsenic (As) by Melastoma malabathricum L. from contaminated soil in separate exposure.
    Selamat SN; Abdullah SR; Idris M
    Int J Phytoremediation; 2014; 16(7-12):694-703. PubMed ID: 24933879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of inoculation of biosurfactant-producing Bacillus sp. J119 on plant growth and cadmium uptake in a cadmium-amended soil.
    Sheng X; He L; Wang Q; Ye H; Jiang C
    J Hazard Mater; 2008 Jun; 155(1-2):17-22. PubMed ID: 18082946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the tolerance of castor bean to Cd and Pb for phytoremediation purposes.
    de Souza Costa ET; Guilherme LR; de Melo EE; Ribeiro BT; Dos Santos B Inácio E; da Costa Severiano E; Faquin V; Hale BA
    Biol Trace Elem Res; 2012 Jan; 145(1):93-100. PubMed ID: 21826609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mn accumulation and tolerance in Celosia argentea Linn.: a new Mn-hyperaccumulating plant species.
    Liu J; Shang W; Zhang X; Zhu Y; Yu K
    J Hazard Mater; 2014 Feb; 267():136-41. PubMed ID: 24444455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lead accumulation, growth responses and biochemical changes of three plant species exposed to soil amended with different concentrations of lead nitrate.
    Chandrasekhar C; Ray JG
    Ecotoxicol Environ Saf; 2019 Apr; 171():26-36. PubMed ID: 30594754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uptake of heavy metals by native species growing in a mining area in Sardinia, Italy: discovering native flora for phytoremediation.
    Barbafieri M; Dadea C; Tassi E; Bretzel F; Fanfani L
    Int J Phytoremediation; 2011; 13(10):985-97. PubMed ID: 21972566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of mycorrhizal influence on the development and phytoremediation potential of Canavalia gladiata in Pb-contaminated soils.
    Souza LA; Andrade SA; Souza SC; Schiavinato MA
    Int J Phytoremediation; 2013; 15(5):465-76. PubMed ID: 23488172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytoremediation of lead-contaminated soil by Sinapis arvensis and Rapistrum rugosum.
    Saghi A; Rashed Mohassel MH; Parsa M; Hammami H
    Int J Phytoremediation; 2016; 18(4):387-92. PubMed ID: 26552966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytoremediation of lead in urban polluted soils in the north of Iran.
    Hashemi SA
    Toxicol Ind Health; 2012 Jun; 28(5):470-3. PubMed ID: 22025504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lead accumulation potential in Acacia victoria.
    Mahdavi A; Khermandar K; Asbchin SA; Tabaraki R
    Int J Phytoremediation; 2014; 16(6):582-92. PubMed ID: 24912244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EDTA-enhanced phytoremediation of lead contaminated soil by Bidens maximowicziana.
    Wang HQ; Lu SJ; Li H; Yao ZH
    J Environ Sci (China); 2007; 19(12):1496-9. PubMed ID: 18277655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of a saprophytic fungus on the growth and the lead uptake, translocation and immobilization in Dodonaea viscosa.
    Rojas-Loria CC; Peralta-Perez Mdel R; Buendia-Gonzalez L; Volke-Sepulveda TL
    Int J Phytoremediation; 2012; 14(5):518-29. PubMed ID: 22567729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site.
    Yoon J; Cao X; Zhou Q; Ma LQ
    Sci Total Environ; 2006 Sep; 368(2-3):456-64. PubMed ID: 16600337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytoextraction potential of poplar (Populus alba L. var. pyramidalis Bunge) from calcareous agricultural soils contaminated by cadmium.
    Hu Y; Nan Z; Jin C; Wang N; Luo H
    Int J Phytoremediation; 2014; 16(5):482-95. PubMed ID: 24912230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cadmium tolerance and accumulation of Elsholtzia argyi origining from a zinc/lead mining site - a hydroponics experiment.
    Li S; Wang F; Ru M; Ni W
    Int J Phytoremediation; 2014; 16(7-12):1257-67. PubMed ID: 24933916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decapitation improves the efficiency of Cd phytoextraction by Celosia argentea Linn.
    Liu J; Zhang X; Mo L; Yao S; Wang Y
    Chemosphere; 2017 Aug; 181():382-389. PubMed ID: 28458213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.