These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 23488138)

  • 1. [Fast 3D model reconstruction of scoliotic spine using two X-ray images].
    Zeng X; Zhou H; Wang C; Chen G
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Feb; 30(1):56-62. PubMed ID: 23488138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast 3D reconstruction of the spine from biplanar radiographs using a deformable articulated model.
    Moura DC; Boisvert J; Barbosa JG; Labelle H; Tavares JM
    Med Eng Phys; 2011 Oct; 33(8):924-33. PubMed ID: 21481628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional reconstruction of the scoliotic spine and pelvis from uncalibrated biplanar x-ray images.
    Kadoury S; Cheriet F; Dansereau J; Labelle H
    J Spinal Disord Tech; 2007 Apr; 20(2):160-7. PubMed ID: 17414987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Personalized X-ray 3-D reconstruction of the scoliotic spine from hybrid statistical and image-based models.
    Kadoury S; Cheriet F; Labelle H
    IEEE Trans Med Imaging; 2009 Sep; 28(9):1422-35. PubMed ID: 19336299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional surface rendering reconstruction of scoliotic vertebrae using a non stereo-corresponding points technique.
    Mitulescu A; Skalli W; Mitton D; De Guise JA
    Eur Spine J; 2002 Aug; 11(4):344-52. PubMed ID: 12193996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D biplanar statistical reconstruction of scoliotic vertebrae.
    Benameur S; Mignotte M; Parent S; Labelle H; Skalli W; de Guise JA
    Stud Health Technol Inform; 2002; 91():281-5. PubMed ID: 15457738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A hierarchical statistical modeling approach for the unsupervised 3-D biplanar reconstruction of the scoliotic spine.
    Benameur S; Mignotte M; Labelle H; De Guise JA
    IEEE Trans Biomed Eng; 2005 Dec; 52(12):2041-57. PubMed ID: 16366228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative analysis of spinal curvature in 3D: application to CT images of normal spine.
    Vrtovec T; Likar B; Pernus F
    Phys Med Biol; 2008 Apr; 53(7):1895-908. PubMed ID: 18364545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A computerized method for evaluating scoliotic deformities using elliptical pattern recognition in X-ray spine images.
    Pinheiro AP; Coelho JC; Veiga ACP; Vrtovec T
    Comput Methods Programs Biomed; 2018 Jul; 161():85-92. PubMed ID: 29852970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D reconstruction of the spine from biplanar X-rays using parametric models based on transversal and longitudinal inferences.
    Humbert L; De Guise JA; Aubert B; Godbout B; Skalli W
    Med Eng Phys; 2009 Jul; 31(6):681-7. PubMed ID: 19230743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of 3-dimensional spinal reconstruction accuracy: biplanar radiographs with EOS versus computed tomography.
    Glaser DA; Doan J; Newton PO
    Spine (Phila Pa 1976); 2012 Jul; 37(16):1391-7. PubMed ID: 22415001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quasi-automatic 3D reconstruction of the full spine from low-dose biplanar X-rays based on statistical inferences and image analysis.
    Gajny L; Ebrahimi S; Vergari C; Angelini E; Skalli W
    Eur Spine J; 2019 Apr; 28(4):658-664. PubMed ID: 30382429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical validation of coronal and sagittal spinal curve measurements based on three-dimensional vertebra vector parameters.
    Somoskeöy S; Tunyogi-Csapó M; Bogyó C; Illés T
    Spine J; 2012 Oct; 12(10):960-8. PubMed ID: 23018164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Postoperative 3D spine reconstruction by navigating partitioning manifolds.
    Kadoury S; Labelle H; Parent S
    Med Phys; 2016 Mar; 43(3):1045-56. PubMed ID: 26936692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional spine model reconstruction using one-class SVM regularization.
    Lecron F; Boisvert J; Mahmoudi S; Labelle H; Benjelloun M
    IEEE Trans Biomed Eng; 2013 Nov; 60(11):3256-64. PubMed ID: 23864145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of the 3-d reconstruction and high-resolution geometrical modeling of the human skeletal trunk from 2-D radiographic images.
    Delorme S; Petit Y; de Guise JA; Labelle H; Aubin CE; Dansereau J
    IEEE Trans Biomed Eng; 2003 Aug; 50(8):989-98. PubMed ID: 12892326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Personalized 3D reconstruction of the rib cage for clinical assessment of trunk deformities.
    Grenier S; Parent S; Cheriet F
    Med Eng Phys; 2013 Nov; 35(11):1651-8. PubMed ID: 23830740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D Reconstruction of Scoliotic Spines from Stereoradiography and Depth Imaging.
    Groisser B; Kimmel R; Feldman G; Rozen N; Wolf A
    Ann Biomed Eng; 2018 Aug; 46(8):1206-1215. PubMed ID: 29687237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D detailed reconstruction of vertebrae with low dose digital stereoradiography.
    Le Bras A; Laporte S; Mitton D; de Guise JA; Skalli W
    Stud Health Technol Inform; 2002; 91():286-90. PubMed ID: 15457739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-scale 3D models of the scoliotic spine from biplanar radiography without calibration objects.
    Moura DC; Barbosa JG
    Comput Med Imaging Graph; 2014 Oct; 38(7):580-5. PubMed ID: 24908193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.