These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 23488168)

  • 1. Proximal spectral sensing to monitor phytoremediation of metal-contaminated soils.
    Rathod PH; Rossiter DG; Noomen MF; van der Meer FD
    Int J Phytoremediation; 2013; 15(5):405-26. PubMed ID: 23488168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unravelling remote sensing signatures of plants contaminated with gasoline and diesel: an approach using the red edge spectral feature.
    Sanches ID; Souza Filho CR; Magalhães LA; Quitério GC; Alves MN; Oliveira WJ
    Environ Pollut; 2013 Mar; 174():16-27. PubMed ID: 23246622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of visible and near infrared spectral reflectance for assessing metals in soil.
    Rathod PH; Müller I; Van der Meer FD; de Smeth B
    Environ Monit Assess; 2015 Oct; 188(10):558. PubMed ID: 27614958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals.
    Tak HI; Ahmad F; Babalola OO
    Rev Environ Contam Toxicol; 2013; 223():33-52. PubMed ID: 23149811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation.
    Khan AG
    J Trace Elem Med Biol; 2005; 18(4):355-64. PubMed ID: 16028497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using magnetic and chemical measurements to detect atmospherically-derived metal pollution in artificial soils and metal uptake in plants.
    Sapkota B; Cioppa MT
    Environ Pollut; 2012 Nov; 170():131-44. PubMed ID: 22789520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytoremediation: an overview of metallic ion decontamination from soil.
    Singh OV; Labana S; Pandey G; Budhiraja R; Jain RK
    Appl Microbiol Biotechnol; 2003 Jun; 61(5-6):405-12. PubMed ID: 12764555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytoremedial assessment of flora tolerant to heavy metals in the contaminated soils of an abandoned Pb mine in Central Portugal.
    Pratas J; Favas PJ; D'Souza R; Varun M; Paul MS
    Chemosphere; 2013 Feb; 90(8):2216-25. PubMed ID: 23098582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive long-term monitoring of soil health in metal phytostabilization: ecological attributes and ecosystem services based on soil microbial parameters.
    Epelde L; Becerril JM; Alkorta I; Garbisu C
    Int J Phytoremediation; 2014; 16(7-12):971-81. PubMed ID: 24933897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytoremediation and microbial community structure of soil from a metal-contaminated military shooting range: comparisons of field and pot experiments.
    Kim S; Baek K; Lee I
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(3):389-94. PubMed ID: 20390882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trace elements in agroecosystems and impacts on the environment.
    He ZL; Yang XE; Stoffella PJ
    J Trace Elem Med Biol; 2005; 19(2-3):125-40. PubMed ID: 16325528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytoremediation and its models for organic contaminated soils.
    Gao YZ; Zhu LZ
    J Environ Sci (China); 2003 May; 15(3):302-10. PubMed ID: 12938977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of electrical fields (AC and DC) on phytoremediation of metal polluted soils with rapeseed (Brassica napus) and tobacco (Nicotiana tabacum).
    Bi R; Schlaak M; Siefert E; Lord R; Connolly H
    Chemosphere; 2011 Apr; 83(3):318-26. PubMed ID: 21237480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of fly ash-aided phytostabilisation of highly contaminated soils after an 8-year field trial: part 1. Influence on soil parameters and metal extractability.
    Lopareva-Pohu A; Pourrut B; Waterlot C; Garçon G; Bidar G; Pruvot C; Shirali P; Douay F
    Sci Total Environ; 2011 Jan; 409(3):647-54. PubMed ID: 21106226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding molecular mechanisms for improving phytoremediation of heavy metal-contaminated soils.
    Hong-Bo S; Li-Ye C; Cheng-Jiang R; Hua L; Dong-Gang G; Wei-Xiang L
    Crit Rev Biotechnol; 2010 Mar; 30(1):23-30. PubMed ID: 19821782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrokinetic-enhanced phytoremediation of soils: status and opportunities.
    Cameselle C; Chirakkara RA; Reddy KR
    Chemosphere; 2013 Oct; 93(4):626-36. PubMed ID: 23835413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability.
    Chehregani A; Noori M; Yazdi HL
    Ecotoxicol Environ Saf; 2009 Jul; 72(5):1349-53. PubMed ID: 19386362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The fate of arsenic in soil-plant systems.
    Moreno-Jiménez E; Esteban E; Peñalosa JM
    Rev Environ Contam Toxicol; 2012; 215():1-37. PubMed ID: 22057929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction.
    Rajkumar M; Ae N; Prasad MN; Freitas H
    Trends Biotechnol; 2010 Mar; 28(3):142-9. PubMed ID: 20044160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical and biological properties in the rhizosphere of Lupinus albus alter soil heavy metal fractionation.
    Martínez-Alcalá I; Walker DJ; Bernal MP
    Ecotoxicol Environ Saf; 2010 May; 73(4):595-602. PubMed ID: 20060590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.