These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
382 related articles for article (PubMed ID: 23488174)
21. Phytoextraction with Brassica napus L.: a tool for sustainable management of heavy metal contaminated soils. Grispen VM; Nelissen HJ; Verkleij JA Environ Pollut; 2006 Nov; 144(1):77-83. PubMed ID: 16515826 [TBL] [Abstract][Full Text] [Related]
22. Inoculation with Metal-Mobilizing Plant-Growth-Promoting Rhizobacterium Bacillus sp. SC2b and Its Role in Rhizoremediation. Ma Y; Oliveira RS; Wu L; Luo Y; Rajkumar M; Rocha I; Freitas H J Toxicol Environ Health A; 2015; 78(13-14):931-44. PubMed ID: 26167758 [TBL] [Abstract][Full Text] [Related]
23. Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus. Zhang YF; He LY; Chen ZJ; Wang QY; Qian M; Sheng XF Chemosphere; 2011 Mar; 83(1):57-62. PubMed ID: 21315404 [TBL] [Abstract][Full Text] [Related]
24. Changes in the population of seed bacteria of transgenerationally Cd-exposed Arabidopsis thaliana. Truyens S; Weyens N; Cuypers A; Vangronsveld J Plant Biol (Stuttg); 2013 Nov; 15(6):971-81. PubMed ID: 23252960 [TBL] [Abstract][Full Text] [Related]
25. Alleviation of heavy metal toxicity and phytostimulation of Brassica campestris L. by endophytic Mucor sp. MHR-7. Zahoor M; Irshad M; Rahman H; Qasim M; Afridi SG; Qadir M; Hussain A Ecotoxicol Environ Saf; 2017 Aug; 142():139-149. PubMed ID: 28407499 [TBL] [Abstract][Full Text] [Related]
26. Increased plant growth and copper uptake of host and non-host plants by metal-resistant and plant growth-promoting endophytic bacteria. Sun L; Wang X; Li Y Int J Phytoremediation; 2016; 18(5):494-501. PubMed ID: 26587767 [TBL] [Abstract][Full Text] [Related]
27. Inoculation of phosphate solubilizing bacteria for the improvement of lead accumulation by Brassica juncea. Ren YX; Zhu XL; Fan DD; Ma P; Liang LH Environ Technol; 2013; 34(1-4):463-9. PubMed ID: 23530360 [TBL] [Abstract][Full Text] [Related]
28. The use of NTA and EDDS for enhanced phytoextraction of metals from a multiply contaminated soil by Brassica carinata. Quartacci MF; Irtelli B; Baker AJ; Navari-Izzo F Chemosphere; 2007 Aug; 68(10):1920-8. PubMed ID: 17418884 [TBL] [Abstract][Full Text] [Related]
29. The effect of soil bioaugmentation with strains of Pseudomonas on Cd, Zn and Cu uptake by Sinapis alba L. Płociniczak T; Kukla M; Wątroba R; Piotrowska-Seget Z Chemosphere; 2013 May; 91(9):1332-7. PubMed ID: 23561856 [TBL] [Abstract][Full Text] [Related]
30. Influence of plant growth promoting bacteria and its mutant on heavy metal toxicity in Brassica juncea grown in fly ash amended soil. Kumar KV; Singh N; Behl HM; Srivastava S Chemosphere; 2008 Jun; 72(4):678-83. PubMed ID: 18440582 [TBL] [Abstract][Full Text] [Related]
31. The EDTA effect on phytoextraction of single and combined metals-contaminated soils using rainbow pink (Dianthus chinensis). Lai HY; Chen ZS Chemosphere; 2005 Aug; 60(8):1062-71. PubMed ID: 15993153 [TBL] [Abstract][Full Text] [Related]
32. Pseudomonas species isolated from tobacco seed promote root growth and reduce lead contents in Nicotiana tobacum K326. Li J; Zheng B; Hu R; Liu Y; Jing Y; Xiao Y; Sun M; Chen W; Zhou Q Can J Microbiol; 2019 Mar; 65(3):214-223. PubMed ID: 30457895 [TBL] [Abstract][Full Text] [Related]
33. The influence of particle size and feedstock of biochar on the accumulation of Cd, Zn, Pb, and As by Brassica chinensis L. Zheng R; Li C; Sun G; Xie Z; Chen J; Wu J; Wang Q Environ Sci Pollut Res Int; 2017 Oct; 24(28):22340-22352. PubMed ID: 28801768 [TBL] [Abstract][Full Text] [Related]
34. Role of microbial inoculation and chitosan in phytoextraction of Cu, Zn, Pb and Cd by Elsholtzia splendens--a field case. Wang FY; Lin XG; Yin R Environ Pollut; 2007 May; 147(1):248-55. PubMed ID: 17011687 [TBL] [Abstract][Full Text] [Related]
35. Accumulation of Cu, Zn, Pb, and Cd in edible parts of four commonly grown crops in two contaminated soils. Hao X; Zhou D; Wang Y; Shi F; Jiang P Int J Phytoremediation; 2011 Mar; 13(3):289-301. PubMed ID: 21598793 [TBL] [Abstract][Full Text] [Related]
36. The use of vetiver for remediation of heavy metal soil contamination. Antiochia R; Campanella L; Ghezzi P; Movassaghi K Anal Bioanal Chem; 2007 Jun; 388(4):947-56. PubMed ID: 17468861 [TBL] [Abstract][Full Text] [Related]
37. Effects of binary metal combinations on zinc, copper, cadmium and lead uptake and distribution in Brassica juncea. Kutrowska A; Małecka A; Piechalak A; Masiakowski W; Hanć A; Barałkiewicz D; Andrzejewska B; Zbierska J; Tomaszewska B J Trace Elem Med Biol; 2017 Dec; 44():32-39. PubMed ID: 28965594 [TBL] [Abstract][Full Text] [Related]
38. Enhanced uptake of As, Zn, and Cu by Vetiveria zizanioides and Zea mays using chelating agents. Chiu KK; Ye ZH; Wong MH Chemosphere; 2005 Sep; 60(10):1365-75. PubMed ID: 16054905 [TBL] [Abstract][Full Text] [Related]
39. Potential use of lime combined with additives on (im)mobilization and phytoavailability of heavy metals from Pb/Zn smelter contaminated soils. Hussain Lahori A; Zhang Z; Guo Z; Mahar A; Li R; Kumar Awasthi M; Ali Sial T; Kumbhar F; Wang P; Shen F; Zhao J; Huang H Ecotoxicol Environ Saf; 2017 Nov; 145():313-323. PubMed ID: 28756252 [TBL] [Abstract][Full Text] [Related]
40. Phytoextraction of metals and rhizoremediation of PAHs in co-contaminated soil by co-planting of Sedum alfredii with ryegrass (Lolium perenne) or castor (Ricinus communis). Wang K; Huang H; Zhu Z; Li T; He Z; Yang X; Alva A Int J Phytoremediation; 2013; 15(3):283-98. PubMed ID: 23488013 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]