These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

39 related articles for article (PubMed ID: 23488636)

  • 1. Atmospheric Degradation of Ecologically Important Biogenic Volatiles: Investigating the Ozonolysis of (E)-β-Ocimene, Isomers of α and β-Farnesene, α-Terpinene and 6-Methyl-5-Hepten-2-One, and Their Gas-Phase Products.
    Touhami D; Mofikoya AO; Girling RD; Langford B; Misztal PK; Pfrang C
    J Chem Ecol; 2024 Apr; 50(3-4):129-142. PubMed ID: 38195852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonequilibrium atmospheric secondary organic aerosol formation and growth.
    Perraud V; Bruns EA; Ezell MJ; Johnson SN; Yu Y; Alexander ML; Zelenyuk A; Imre D; Chang WL; Dabdub D; Pankow JF; Finlayson-Pitts BJ
    Proc Natl Acad Sci U S A; 2012 Feb; 109(8):2836-41. PubMed ID: 22308444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organosulfates as tracers for secondary organic aerosol (SOA) formation from 2-methyl-3-buten-2-ol (MBO) in the atmosphere.
    Zhang H; Worton DR; Lewandowski M; Ortega J; Rubitschun CL; Park JH; Kristensen K; Campuzano-Jost P; Day DA; Jimenez JL; Jaoui M; Offenberg JH; Kleindienst TE; Gilman J; Kuster WC; de Gouw J; Park C; Schade GW; Frossard AA; Russell L; Kaser L; Jud W; Hansel A; Cappellin L; Karl T; Glasius M; Guenther A; Goldstein AH; Seinfeld JH; Gold A; Kamens RM; Surratt JD
    Environ Sci Technol; 2012 Sep; 46(17):9437-46. PubMed ID: 22849588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying organic aerosol sources by comparing functional group composition in chamber and atmospheric particles.
    Russell LM; Bahadur R; Ziemann PJ
    Proc Natl Acad Sci U S A; 2011 Mar; 108(9):3516-21. PubMed ID: 21317360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decreases in Epoxide-Driven Secondary Organic Aerosol Production under Highly Acidic Conditions: The Importance of Acid-Base Equilibria.
    Cooke ME; Armstrong NC; Fankhauser AM; Chen Y; Lei Z; Zhang Y; Ledsky IR; Turpin BJ; Zhang Z; Gold A; McNeill VF; Surratt JD; Ault AP
    Environ Sci Technol; 2024 Jun; 58(24):10675-10684. PubMed ID: 38843196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of Chromophores from
    Wong C; Pazienza JE; Rychnovsky SD; Nizkorodov SA
    J Am Chem Soc; 2024 May; 146(17):11702-11710. PubMed ID: 38640258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aromatic organosulfates in atmospheric aerosols: synthesis, characterization, and abundance.
    Staudt S; Kundu S; Lehmler HJ; He X; Cui T; Lin YH; Kristensen K; Glasius M; Zhang X; Weber RJ; Surratt JD; Stone1 EA
    Atmos Environ (1994); 2014 Sep; 94():366-373. PubMed ID: 24976783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atmospheric organic aerosol production by heterogeneous acid-catalyzed reactions.
    Jang M; Czoschke NM; Northcross AL
    Chemphyschem; 2004 Nov; 5(11):1647-61. PubMed ID: 15580924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Can forest trees compensate for stress-generated growth losses by induced production of volatile compounds?
    Holopainen JK
    Tree Physiol; 2011 Dec; 31(12):1356-77. PubMed ID: 22112623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ozone-driven secondary organic aerosol production chain.
    Iinuma Y; Kahnt A; Mutzel A; Böge O; Herrmann H
    Environ Sci Technol; 2013 Apr; 47(8):3639-47. PubMed ID: 23488636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laboratory chamber studies on the formation of organosulfates from reactive uptake of monoterpene oxides.
    Iinuma Y; Böge O; Kahnt A; Herrmann H
    Phys Chem Chem Phys; 2009 Sep; 11(36):7985-97. PubMed ID: 19727505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the formation of secondary organic aerosol (SOA). 2. The predicted effects of relative humidity on aerosol formation in the alpha-pinene-, beta-pinene-, sabinene-, delta 3-carene-, and cyclohexene-ozone systems.
    Seinfeld JH; Erdakos GB; Asher WE; Pankow JF
    Environ Sci Technol; 2001 May; 35(9):1806-17. PubMed ID: 11355196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Estimate of the formation potential of secondary organic aerosol in Beijing summertime].
    Lü ZF; Hao JM; Duan JC; Li JH
    Huan Jing Ke Xue; 2009 Apr; 30(4):969-75. PubMed ID: 19544991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photo-oxidation of low-volatility organics found in motor vehicle emissions: production and chemical evolution of organic aerosol mass.
    Miracolo MA; Presto AA; Lambe AT; Hennigan CJ; Donahue NM; Kroll JH; Worsnop DR; Robinson AL
    Environ Sci Technol; 2010 Mar; 44(5):1638-43. PubMed ID: 20121083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laboratory studies on secondary organic aerosol formation from terpenes.
    Iinuma Y; Böge O; Miao Y; Sierau B; Gnauk T; Herrmann H
    Faraday Discuss; 2005; 130():279-94; discussion 363-86, 519-24. PubMed ID: 16161789
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.