These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 23488738)

  • 1. Enantioselective physiological effects of the herbicide diclofop on cyanobacterium Microcystis aeruginosa.
    Ye J; Wang L; Zhang Z; Liu W
    Environ Sci Technol; 2013 Apr; 47(8):3893-901. PubMed ID: 23488738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enantioselective changes in oxidative stress and toxin release in Microcystis aeruginosa exposed to chiral herbicide diclofop acid.
    Ye J; Zhang Y; Chen S; Liu C; Zhu Y; Liu W
    Aquat Toxicol; 2014 Jan; 146():12-9. PubMed ID: 24240105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enantioselective degradation and ecotoxicity of the chiral herbicide diclofop in three freshwater alga cultures.
    Cai X; Liu W; Sheng G
    J Agric Food Chem; 2008 Mar; 56(6):2139-46. PubMed ID: 18318497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enantioselective Toxicity of Chiral Herbicide Metolachlor to Microcystis aeruginosa.
    Chen S; Zhang L; Chen H; Chen Z; Wen Y
    J Agric Food Chem; 2019 Feb; 67(6):1631-1637. PubMed ID: 30673265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental behavior of the chiral aryloxyphenoxypropionate herbicide diclofop-methyl and diclofop: enantiomerization and enantioselective degradation in soil.
    Diao J; Xu P; Wang P; Lu Y; Lu D; Zhou Z
    Environ Sci Technol; 2010 Mar; 44(6):2042-7. PubMed ID: 20155898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of enantioselective biochemical, physiological, and transcriptional effects of the chiral herbicide diclofop methyl on rice seedlings.
    Qian H; Wang R; Chen J; Ding H; Yong W; Songlin R; Fu Z
    J Agric Food Chem; 2012 Jun; 60(22):5515-23. PubMed ID: 22612386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enantioselective metabolism of the chiral herbicide diclofop-methyl and diclofop by HPLC in loach (Misgurnus anguillicaudatus) liver microsomes in vitro.
    Ma R; Qu H; Liu X; Liu D; Liang Y; Wang P; Zhou Z
    J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Oct; 969():132-8. PubMed ID: 25173494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating the potential toxicity of chiral diclofop-methyl: Mechanistic insight into the enantioselective behavior.
    Ding F; Peng W; Peng YK; Liu BQ
    Toxicology; 2020 May; 438():152446. PubMed ID: 32278049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological effects of the herbicide glyphosate on the cyanobacterium Microcystis aeruginosa.
    Wu L; Qiu Z; Zhou Y; Du Y; Liu C; Ye J; Hu X
    Aquat Toxicol; 2016 Sep; 178():72-9. PubMed ID: 27472782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enantioselective effects of chiral herbicide diclofop acid on rice Xiushui 63 seedlings.
    Ye J; Zhang Q; Zhang A; Wen Y; Liu W
    Bull Environ Contam Toxicol; 2009 Jul; 83(1):85-91. PubMed ID: 19452112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the way to cyanobacterial blooms: impact of the herbicide metribuzin on the competition between a green alga (Scenedesmus) and a cyanobacterium (Microcystis).
    Lürling M; Roessink I
    Chemosphere; 2006 Oct; 65(4):618-26. PubMed ID: 16540149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alteration of the Enantioselective Toxicity of Diclofop Acid by Nonylphenol: Effect on Ascorbate-Glutathione Cycle in Microcystis Aeruginosa.
    Zhang Q; Song Q; Li J; Zou M; Zhang C; Zhang Q
    Chirality; 2016 Jun; 28(6):475-81. PubMed ID: 27103507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enantiomerization and enantioselective bioaccumulation of diclofop-methyl in tubifex worms.
    Liu T; Duan X
    Chirality; 2024 Jan; 36(1):e23618. PubMed ID: 37718908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stereoselective degradation of Diclofop-methyl during alcohol fermentation process.
    Lu Y; Diao J; Gu X; Zhang Y; Xu P; Wang P; Zhou Z
    Chirality; 2011 May; 23(5):424-8. PubMed ID: 21387418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enantiomeric characterization of herbicide lactofen: Enantioseparation, absolute configuration assignment and enantioselective activity and toxicity.
    Xie J; Zhao L; Liu K; Guo F; Chen Z; Liu W
    Chemosphere; 2018 Feb; 193():351-357. PubMed ID: 29149711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological effects and toxin release in Microcystis aeruginosa and Microcystis viridis exposed to herbicide fenoxaprop-p-ethyl.
    Du Y; Ye J; Wu L; Yang C; Wang L; Hu X
    Environ Sci Pollut Res Int; 2017 Mar; 24(8):7752-7763. PubMed ID: 28127689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-dependent degradation and toxicity of diclofop-methyl in algal suspensions : emerging contaminants.
    Cai X; Ye J; Sheng G; Liu W
    Environ Sci Pollut Res Int; 2009 Jun; 16(4):459-65. PubMed ID: 19052793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enantioselective degradation in sediment and aquatic toxicity to Daphnia magna of the herbicide lactofen enantiomers.
    Diao J; Xu P; Wang P; Lu D; Lu Y; Zhou Z
    J Agric Food Chem; 2010 Feb; 58(4):2439-45. PubMed ID: 20088506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of a novel allelochemical ethyl 2-methyl acetoacetate (EMA) on the ultrastructure and pigment composition of cyanobacterium Microcystis aeruginosa.
    Hong Y; Huang JJ; Hu HY
    Bull Environ Contam Toxicol; 2009 Oct; 83(4):502-8. PubMed ID: 19557299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of two novel hydrolases from Sphingopyxis sp. DBS4 for enantioselective degradation of chiral herbicide diclofop-methyl.
    Mao Z; Song M; Zhao R; Liu Y; Zhu Y; Liu X; Liang H; Zhang H; Wu X; Wang G; Li F; Zhang L
    J Hazard Mater; 2024 May; 469():133967. PubMed ID: 38457978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.