These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 23488897)

  • 41. Quantum mechanical design and structure of the Li@B10H14 basket with a remarkably enhanced electro-optical response.
    Muhammad S; Xu H; Liao Y; Kan Y; Su Z
    J Am Chem Soc; 2009 Aug; 131(33):11833-40. PubMed ID: 19642644
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High-throughput virtual screening of organic second-order nonlinear optical chromophores within the donor-π-bridge-acceptor framework.
    Tu C; Huang W; Liang S; Wang K; Tian Q; Yan W
    Phys Chem Chem Phys; 2024 Jan; 26(3):2363-2375. PubMed ID: 38167888
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A theoretical study of alkaline-earthides Li(NH
    Zhu L; Xue K; Hou J
    J Mol Model; 2019 May; 25(6):150. PubMed ID: 31065798
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Vibrational and quantum-chemical study of nonlinear optical chromophores containing dithienothiophene as the electron relay.
    Delgado Ledesma S; Ponce Ortiz R; Ruiz Delgado MC; Vida Y; Pérez-Inestrosa E; Casado J; Hernández V; Kim OK; Lehn JM; López Navarrete JT
    Chemistry; 2004 Aug; 10(15):3805-16. PubMed ID: 15281165
    [TBL] [Abstract][Full Text] [Related]  

  • 45. On the Potential of Using the Al7 Superatom as an Excess Electron Acceptor To Construct Materials with Excellent Nonlinear Optical Properties.
    Huang S; Liao K; Peng B; Luo Q
    Inorg Chem; 2016 May; 55(9):4421-7. PubMed ID: 27064431
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A theoretical study on superalkali-doped nanocages: unique inorganic electrides with high stability, deep-ultraviolet transparency, and a considerable nonlinear optical response.
    Sun WM; Li XH; Wu D; Li Y; He HM; Li ZR; Chen JH; Li CY
    Dalton Trans; 2016 Apr; 45(17):7500-9. PubMed ID: 27046220
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Influence of spiral framework on nonlinear optical materials.
    Hu YY; Sun SL; Tian WT; Tian WQ; Xu HL; Su ZM
    Chemphyschem; 2014 Apr; 15(5):929-34. PubMed ID: 24677788
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Theoretical study on novel superalkali doped graphdiyne complexes: Unique approach for the enhancement of electronic and nonlinear optical response.
    Kosar N; Shehzadi K; Ayub K; Mahmood T
    J Mol Graph Model; 2020 Jun; 97():107573. PubMed ID: 32114080
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Design a novel type of excess electron compounds with large nonlinear optical responses using group 12 elements (Zn, Cd and Hg).
    Zhang B; Wen J; Zhang Y; Xiong Y; Huang X; Hou J; Wang X; Guan J; Zhi Q
    J Mol Graph Model; 2021 Dec; 109():108003. PubMed ID: 34500246
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Second-order NLO responses of two-cavity inorganic electrides Li
    Ma N; Gong J; Li S; Zhang J; Qiu Y; Zhang G
    Phys Chem Chem Phys; 2017 Jan; 19(3):2557-2566. PubMed ID: 28059404
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Second-order nonlinear optical properties of trisubstituted Keggin and Wells-Dawson polyoxometalates: density functional theory investigation of the inorganic donor-conjugated bridge-acceptor structure.
    Liu CG; Guan W; Song P; Su ZM; Yao C; Wang EB
    Inorg Chem; 2009 Sep; 48(17):8115-9. PubMed ID: 19639969
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The search for a maximum of the D-π-A paradigm for second order nonlinear optical molecular materials.
    Yang CC; Su X; Zheng QZ; Chen J; Tian WQ; Li WQ; Yang L
    Phys Chem Chem Phys; 2023 Nov; 25(45):31481-31492. PubMed ID: 37962477
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Extremely large static and dynamic nonlinear optical response of small superalkali clusters NM
    Ahsin A; Ayub K
    J Mol Graph Model; 2021 Dec; 109():108031. PubMed ID: 34536836
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Demonstrating the Potential of Alkali Metal-Doped Cyclic C
    Wajid S; Kosar N; Ullah F; Gilani MA; Ayub K; Muhammad S; Mahmood T
    ACS Omega; 2021 Nov; 6(44):29852-29861. PubMed ID: 34778658
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Theoretical investigation of perfect fullerene-like borospherene
    Chen W; Li J; Liu J; Sun W; Li Z; Li Y
    Dalton Trans; 2020 Nov; 49(43):15267-15275. PubMed ID: 33112315
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Design of Lewis acid-base complex: enhancing the stability and first hyperpolarizability of large excess electron compound.
    Ma F; Miao T; Zhou Z; Sun D
    J Mol Model; 2013 Nov; 19(11):4805-13. PubMed ID: 24022783
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Controlling electron transfer in donor-bridge-acceptor molecules using cross-conjugated bridges.
    Ricks AB; Solomon GC; Colvin MT; Scott AM; Chen K; Ratner MA; Wasielewski MR
    J Am Chem Soc; 2010 Nov; 132(43):15427-34. PubMed ID: 20942407
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Design of a Novel Series of Donor-Acceptor Frameworks via Superalkali-Superhalogen Assemblage to Improve the Nonlinear Optical Responses.
    Omidvar A
    Inorg Chem; 2018 Aug; 57(15):9335-9347. PubMed ID: 29995400
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Coinage metalides: a new class of excess electron compounds with high stability and large nonlinear optical responses.
    Li XH; Zhang XL; Chen QH; Zhang L; Chen JH; Wu D; Sun WM; Li ZR
    Phys Chem Chem Phys; 2020 Apr; 22(16):8476-8484. PubMed ID: 32285081
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Interplay between barrier width and height in electron tunneling: photoinduced electron transfer in porphyrin-based donor-bridge-acceptor systems.
    Pettersson K; Wiberg J; Ljungdahl T; Mårtensson J; Albinsson B
    J Phys Chem A; 2006 Jan; 110(1):319-26. PubMed ID: 16392871
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.