These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 23488907)

  • 21. Engineering tissues for in vitro applications.
    Khetani SR; Bhatia SN
    Curr Opin Biotechnol; 2006 Oct; 17(5):524-31. PubMed ID: 16978857
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Emerging implications of nanotechnology on cancer diagnostics and therapeutics.
    Cuenca AG; Jiang H; Hochwald SN; Delano M; Cance WG; Grobmyer SR
    Cancer; 2006 Aug; 107(3):459-66. PubMed ID: 16795065
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanostructured polymeric scaffolds for orthopaedic regenerative engineering.
    Deng M; James R; Laurencin CT; Kumbar SG
    IEEE Trans Nanobioscience; 2012 Mar; 11(1):3-14. PubMed ID: 22275722
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Surface engineered and drug releasing pre-fabricated scaffolds for tissue engineering.
    Chung HJ; Park TG
    Adv Drug Deliv Rev; 2007 May; 59(4-5):249-62. PubMed ID: 17482310
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Human lung tissue engineering: a critical tool for safer medicines.
    BéruBé K; Gibson C; Job C; Prytherch Z
    Cell Tissue Bank; 2011 Feb; 12(1):11-3. PubMed ID: 20824355
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Present status and future potential of enhancing bone healing using nanotechnology.
    Stylios G; Wan T; Giannoudis P
    Injury; 2007 Mar; 38 Suppl 1():S63-74. PubMed ID: 17383487
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hierarchical scaffolds via combined macro- and micro-phase separation.
    George PA; Quinn K; Cooper-White JJ
    Biomaterials; 2010 Feb; 31(4):641-7. PubMed ID: 19836830
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microrobotics and MEMS-based fabrication techniques for scaffold-based tissue engineering.
    Zhang H; Hutmacher DW; Chollet F; Poo AN; Burdet E
    Macromol Biosci; 2005 Jun; 5(6):477-89. PubMed ID: 15968638
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering.
    Chung BG; Lee KH; Khademhosseini A; Lee SH
    Lab Chip; 2012 Jan; 12(1):45-59. PubMed ID: 22105780
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Application of MEMS technology and engineering in medicine: a new paradigm for facial muscle reanimation.
    Cockerham K; Aro S; Liu W; Pantchenko O; Olmos A; Oehlberg M; Sivaprakasam M; Crow L
    Expert Rev Med Devices; 2008 May; 5(3):371-81. PubMed ID: 18452387
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Developments in three-dimensional cell culture technology aimed at improving the accuracy of in vitro analyses.
    Maltman DJ; Przyborski SA
    Biochem Soc Trans; 2010 Aug; 38(4):1072-5. PubMed ID: 20659006
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrogels and microtechnologies for engineering the cellular microenvironment.
    Gauvin R; Parenteau-Bareil R; Dokmeci MR; Merryman WD; Khademhosseini A
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2012; 4(3):235-46. PubMed ID: 22144036
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Examination of cell-host-biomaterial interactions via high-throughput technologies: A re-appraisal.
    Power KA; Fitzgerald KT; Gallagher WM
    Biomaterials; 2010 Sep; 31(26):6667-74. PubMed ID: 20557931
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Scaffold engineering: a bridge to where?
    Hollister SJ
    Biofabrication; 2009 Mar; 1(1):012001. PubMed ID: 20811095
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Micropatterned surfaces: techniques and applications in cell biology.
    Quist AP; Oscarsson S
    Expert Opin Drug Discov; 2010 Jun; 5(6):569-81. PubMed ID: 22823168
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microscale technologies for tissue engineering and biology.
    Khademhosseini A; Langer R; Borenstein J; Vacanti JP
    Proc Natl Acad Sci U S A; 2006 Feb; 103(8):2480-7. PubMed ID: 16477028
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interplay of biomaterials and micro-scale technologies for advancing biomedical applications.
    Khademhosseini A; Bettinger C; Karp JM; Yeh J; Ling Y; Borenstein J; Fukuda J; Langer R
    J Biomater Sci Polym Ed; 2006; 17(11):1221-40. PubMed ID: 17176747
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microfluidics: Emerging prospects for anti-cancer drug screening.
    Wlodkowic D; Darzynkiewicz Z
    World J Clin Oncol; 2010 Nov; 1(1):18-23. PubMed ID: 21603306
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Micro- and nanotechnologies for studying cellular function.
    Shim J; Bersano-Begey TF; Zhu X; Tkaczyk AH; Linderman JJ; Takayama S
    Curr Top Med Chem; 2003; 3(6):687-703. PubMed ID: 12570859
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Convergence of Highly Resolved and Rapid Screening Platforms with Dynamically Engineered, Cell Phenotype-Prescriptive Biomaterials.
    Bennett NK; Dhaliwal A; Moghe PV
    Curr Pharmacol Rep; 2016 Jun; 2(3):142-151. PubMed ID: 27482508
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.