These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 23488911)

  • 21. Metaphosphate-Bridged Interface Boosts High-Performance Lithium Storage.
    Chen Y; Ma J; Peng Q; Gong X; Lin J; Qi X; Guo H
    ACS Appl Mater Interfaces; 2022 May; 14(18):20896-20906. PubMed ID: 35481359
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A SnO2@carbon nanocluster anode material with superior cyclability and rate capability for lithium-ion batteries.
    He M; Yuan L; Hu X; Zhang W; Shu J; Huang Y
    Nanoscale; 2013 Apr; 5(8):3298-305. PubMed ID: 23483088
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sandwich-Stacked SnO2/Cu Hybrid Nanosheets as Multichannel Anodes for Lithium Ion Batteries.
    Deng J; Yan C; Yang L; Baunack S; Oswald S; Wendrock H; Mei Y; Schmidt OG
    ACS Nano; 2013 Aug; 7(8):6948-54. PubMed ID: 23879640
    [TBL] [Abstract][Full Text] [Related]  

  • 24. One-step growth of 3D CoNi2S4 nanorods and cross-linked NiCo2S4 nanosheet arrays on carbon paper as anodes for high-performance lithium ion batteries.
    Yang W; Chen L; Yang J; Zhang X; Fang C; Chen Z; Huang L; Liu J; Zhou Y; Zou Z
    Chem Commun (Camb); 2016 Apr; 52(30):5258-61. PubMed ID: 27001486
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Solvothermal-induced 3D macroscopic SnO2/nitrogen-doped graphene aerogels for high capacity and long-life lithium storage.
    Wang R; Xu C; Sun J; Gao L; Yao H
    ACS Appl Mater Interfaces; 2014 Mar; 6(5):3427-36. PubMed ID: 24555873
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabrication of free-standing ZnMn2O4 mesoscale tubular arrays for lithium-ion anodes with highly reversible lithium storage properties.
    Kim JG; Lee SH; Kim Y; Kim WB
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11321-8. PubMed ID: 24125063
    [TBL] [Abstract][Full Text] [Related]  

  • 27. α-Fe2O3 nanowall arrays: hydrothermal preparation, growth mechanism and excellent rate performances for lithium ion batteries.
    Lei D; Zhang M; Qu B; Chen L; Wang Y; Zhang E; Xu Z; Li Q; Wang T
    Nanoscale; 2012 Jun; 4(11):3422-6. PubMed ID: 22562049
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Diffusion-controlled evolution of core-shell nanowire arrays into integrated hybrid nanotube arrays for Li-ion batteries.
    Jiang J; Luo J; Zhu J; Huang X; Liu J; Yu T
    Nanoscale; 2013 Sep; 5(17):8105-13. PubMed ID: 23884214
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Engineering three-dimensionally electrodeposited Si-on-Ni inverse opal structure for high volumetric capacity Li-ion microbattery anode.
    Liu H; Cho HM; Meng YS; Li Q
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9842-9. PubMed ID: 24853174
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Walnut core-like hollow carbon micro/nanospheres supported SnO
    Tian Q; Chen Y; Chen F; Chen J; Yang L
    J Colloid Interface Sci; 2019 Oct; 554():424-432. PubMed ID: 31323477
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vertically ordered Ni₃Si₂/Si nanorod arrays as anode materials for high-performance Li-ion batteries.
    Fan X; Zhang H; Du N; Wu P; Xu X; Li Y; Yang D
    Nanoscale; 2012 Sep; 4(17):5343-7. PubMed ID: 22814832
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SnO2/WO3 core-shell nanorods and their high reversible capacity as lithium-ion battery anodes.
    Xue XY; He B; Yuan S; Xing LL; Chen ZH; Ma CH
    Nanotechnology; 2011 Sep; 22(39):395702. PubMed ID: 21891841
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Controlled synthesis of mesoporous MnO/C networks by microwave irradiation and their enhanced lithium-storage properties.
    Luo W; Hu X; Sun Y; Huang Y
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):1997-2003. PubMed ID: 23432367
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interfacial engineering of Ag nanodots/MoSe
    Xia H; Li K; Zhang J
    J Colloid Interface Sci; 2019 Dec; 557():635-643. PubMed ID: 31557584
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrodeposited three-dimensional Ni-Si nanocable arrays as high performance anodes for lithium ion batteries.
    Liu H; Hu L; Meng YS; Li Q
    Nanoscale; 2013 Nov; 5(21):10376-83. PubMed ID: 24057142
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Three-dimensional Co₃O₄@NiMoO₄ core/shell nanowire arrays on Ni foam for electrochemical energy storage.
    Cai D; Wang D; Liu B; Wang L; Liu Y; Li H; Wang Y; Li Q; Wang T
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):5050-5. PubMed ID: 24598433
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Highly reversible lithium storage in hierarchical Ca2Ge7O16 nanowire arrays/carbon textile anodes.
    Li W; Wang X; Liu B; Luo S; Liu Z; Hou X; Xiang Q; Chen D; Shen G
    Chemistry; 2013 Jun; 19(26):8650-6. PubMed ID: 23657868
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ni-V2O5.nH2O core-shell nanocable arrays for enhanced electrochemical intercalation.
    Takahashi K; Wang Y; Cao G
    J Phys Chem B; 2005 Jan; 109(1):48-51. PubMed ID: 16850983
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preparation via an electrochemical method of graphene films coated on both sides with NiO nanoparticles for use as high-performance lithium ion anodes.
    Kim GP; Nam I; Park S; Park J; Yi J
    Nanotechnology; 2013 Nov; 24(47):475402. PubMed ID: 24192337
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.