These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 23489490)

  • 1. Molecular simulation studies of reversed-phase liquid chromatography.
    Lindsey RK; Rafferty JL; Eggimann BL; Siepmann JI; Schure MR
    J Chromatogr A; 2013 Apr; 1287():60-82. PubMed ID: 23489490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of chain length, embedded polar groups, pressure, and pore shape on structure and retention in reversed-phase liquid chromatography: molecular-level insights from Monte Carlo simulations.
    Rafferty JL; Siepmann JI; Schure MR
    J Chromatogr A; 2009 Mar; 1216(12):2320-31. PubMed ID: 19203762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A molecular simulation study of the effects of stationary phase and solute chain length in reversed-phase liquid chromatography.
    Rafferty JL; Siepmann JI; Schure MR
    J Chromatogr A; 2012 Feb; 1223():24-34. PubMed ID: 22239960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chain conformation and solvent partitioning in reversed-phase liquid chromatography: Monte Carlo simulations for various water/methanol concentrations.
    Zhang L; Rafferty JL; Siepmann JI; Chen B; Schure MR
    J Chromatogr A; 2006 Sep; 1126(1-2):219-31. PubMed ID: 16820151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular simulations of retention in chromatographic systems: use of biased Monte Carlo techniques to access multiple time and length scales.
    Rafferty JL; Siepmann JI; Schure MR
    Top Curr Chem; 2012; 307():181-200. PubMed ID: 21898207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights from molecular simulations about dead time markers in reversed-phase liquid chromatography.
    Trebel N; Höltzel A; Steinhoff A; Tallarek U
    J Chromatogr A; 2021 Mar; 1640():461958. PubMed ID: 33582514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence imaging of single-molecule retention trajectories in reversed-phase chromatographic particles.
    Cooper JT; Peterson EM; Harris JM
    Anal Chem; 2013 Oct; 85(19):9363-70. PubMed ID: 23998479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of surface excess adsorption and retention factors in reversed-phase liquid chromatography from molecular dynamics simulations.
    Gritti F; Trebel N; Höltzel A; Tallarek U
    J Chromatogr A; 2022 Dec; 1685():463627. PubMed ID: 36370628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organic-solvent ditch overlap in reversed-phase liquid chromatography: A molecular dynamics simulation study in cylindrical 6-12 nm-diameter pores.
    Tallarek U; Trebel N; Frerichs D; Steinhoff A; Höltzel A
    J Chromatogr A; 2024 Jul; 1726():464960. PubMed ID: 38718695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retention mechanism for polycyclic aromatic hydrocarbons in reversed-phase liquid chromatography with monomeric stationary phases.
    Rafferty JL; Siepmann JI; Schure MR
    J Chromatogr A; 2011 Dec; 1218(51):9183-93. PubMed ID: 22099228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the chromatographic efficiency of analytical scale column format porous polymer monoliths: interplay of morphology and nanoscale gel porosity.
    Nischang I
    J Chromatogr A; 2012 May; 1236():152-63. PubMed ID: 22443891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intrinsic difference between phenyl hexyl- and octadecyl-bonded silicas in the solute retention selectivity in reversed-phase liquid chromatography with aqueous mobile phase.
    Nakamura K; Saito S; Shibukawa M
    J Chromatogr A; 2020 Sep; 1628():461450. PubMed ID: 32822989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of bonded-phase coverage in reversed-phase liquid chromatography via molecular simulation II. Effects on solute retention.
    Rafferty JL; Siepmann JI; Schure MR
    J Chromatogr A; 2008 Sep; 1204(1):20-7. PubMed ID: 18687439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mobile phase effects in reversed-phase liquid chromatography: a comparison of acetonitrile/water and methanol/water solvents as studied by molecular simulation.
    Rafferty JL; Siepmann JI; Schure MR
    J Chromatogr A; 2011 Apr; 1218(16):2203-13. PubMed ID: 21388628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation studies on the effects of mobile-phase modification on partitioning in liquid chromatography.
    Wick CD; Siepmann JI; Schure MR
    Anal Chem; 2004 May; 76(10):2886-92. PubMed ID: 15144201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards multimodal HPLC separations on humic acid-bonded aminopropyl silica: RPLC and HILIC behavior.
    Gezici O; Kara H
    Talanta; 2011 Sep; 85(3):1472-82. PubMed ID: 21807212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retention mechanism in reversed-phase liquid chromatography: a molecular perspective.
    Rafferty JL; Zhang L; Siepmann JI; Schure MR
    Anal Chem; 2007 Sep; 79(17):6551-8. PubMed ID: 17668929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of bonded-phase coverage in reversed-phase liquid chromatography via molecular simulation I. Effects on chain conformation and interfacial properties.
    Rafferty JL; Siepmann JI; Schure MR
    J Chromatogr A; 2008 Sep; 1204(1):11-9. PubMed ID: 18691717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic properties for applications in chemical industry via classical force fields.
    Guevara-Carrion G; Hasse H; Vrabec J
    Top Curr Chem; 2012; 307():201-49. PubMed ID: 21678137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption mechanism of acids and bases in reversed-phase liquid chromatography in weak buffered mobile phases designed for liquid chromatography/mass spectrometry.
    Gritti F; Guiochon G
    J Chromatogr A; 2009 Mar; 1216(10):1776-88. PubMed ID: 18976999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.