BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 23489569)

  • 1. Potential of constructed wetlands microcosms for the removal of veterinary pharmaceuticals from livestock wastewater.
    Carvalho PN; Araújo JL; Mucha AP; Basto MC; Almeida CM
    Bioresour Technol; 2013 Apr; 134():412-6. PubMed ID: 23489569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial community dynamics associated with veterinary antibiotics removal in constructed wetlands microcosms.
    Fernandes JP; Almeida CMR; Pereira AC; Ribeiro IL; Reis I; Carvalho P; Basto MCP; Mucha AP
    Bioresour Technol; 2015 Apr; 182():26-33. PubMed ID: 25679496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential of Phragmites australis for the removal of veterinary pharmaceuticals from aquatic media.
    Carvalho PN; Basto MC; Almeida CM
    Bioresour Technol; 2012 Jul; 116():497-501. PubMed ID: 22522014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constructed wetlands for the removal of metals from livestock wastewater - Can the presence of veterinary antibiotics affect removals?
    Almeida CM; Santos F; Ferreira AC; Gomes CR; Basto MC; Mucha AP
    Ecotoxicol Environ Saf; 2017 Mar; 137():143-148. PubMed ID: 27918945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of veterinary antibiotics in constructed wetland microcosms - Response of bacterial communities.
    Santos F; Almeida CMR; Ribeiro I; Ferreira AC; Mucha AP
    Ecotoxicol Environ Saf; 2019 Mar; 169():894-901. PubMed ID: 30597789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Livestock Wastewater Treatment in Constructed Wetlands for Agriculture Reuse.
    Dias S; Mucha AP; Duarte Crespo R; Rodrigues P; Almeida CMR
    Int J Environ Res Public Health; 2020 Nov; 17(22):. PubMed ID: 33228045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of vertical up-flow constructed wetlands on swine wastewater containing tetracyclines and tet genes.
    Huang X; Liu C; Li K; Su J; Zhu G; Liu L
    Water Res; 2015 Mar; 70():109-17. PubMed ID: 25528541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of livestock wastewater variety and disinfectants on the performance of constructed wetlands in organic matters and nitrogen removal.
    Hu YS; Kumar JL; Akintunde AO; Zhao XH; Zhao YQ
    Environ Sci Pollut Res Int; 2011 Sep; 18(8):1414-21. PubMed ID: 21487645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activated sludge systems removal efficiency of veterinary pharmaceuticals from slaughterhouse wastewater.
    Carvalho PN; Pirra A; Basto MC; Almeida CM
    Environ Sci Pollut Res Int; 2013 Dec; 20(12):8790-800. PubMed ID: 23740304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Examination of oxygen release from plants in constructed wetlands in different stages of wetland plant life cycle.
    Zhang J; Wu H; Hu Z; Liang S; Fan J
    Environ Sci Pollut Res Int; 2014; 21(16):9709-16. PubMed ID: 24777322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vertical up-flow constructed wetlands exhibited efficient antibiotic removal but induced antibiotic resistance genes in effluent.
    Song HL; Zhang S; Guo J; Yang YL; Zhang LM; Li H; Yang XL; Liu X
    Chemosphere; 2018 Jul; 203():434-441. PubMed ID: 29635154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial degradation of tetracycline in the aquatic environment: a review.
    Shao S; Wu X
    Crit Rev Biotechnol; 2020 Nov; 40(7):1010-1018. PubMed ID: 32777939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive assessment of the design configuration of constructed wetlands for the removal of pharmaceuticals and personal care products from urban wastewaters.
    Hijosa-Valsero M; Matamoros V; Sidrach-Cardona R; Martín-Villacorta J; Bécares E; Bayona JM
    Water Res; 2010 Jun; 44(12):3669-78. PubMed ID: 20494393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of pharmaceuticals in microcosm constructed wetlands using Typha spp. and LECA.
    Dordio A; Carvalho AJ; Teixeira DM; Dias CB; Pinto AP
    Bioresour Technol; 2010 Feb; 101(3):886-92. PubMed ID: 19783427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Behavior of tetracycline and sulfamethazine with corresponding resistance genes from swine wastewater in pilot-scale constructed wetlands.
    Liu L; Liu YH; Wang Z; Liu CX; Huang X; Zhu GF
    J Hazard Mater; 2014 Aug; 278():304-10. PubMed ID: 24992455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of veterinary antibiotics, alkylphenolic compounds, and estrogens from the Wuluo constructed wetland in southern Taiwan.
    Hsieh CY; Liaw ET; Fan KM
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(2):151-60. PubMed ID: 25560261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of pharmaceutical active compounds in wastewater by constructed wetlands: Performance and mechanisms.
    Zhang H; Wang XC; Zheng Y; Dzakpasu M
    J Environ Manage; 2023 Jan; 325(Pt A):116478. PubMed ID: 36272291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of chemical reaction kinetics of depredating organic pollutants from secondary effluent of wastewater treatment plant in constructed wetlands.
    Wang H; Jiang D; Yang Y; Cao G
    Water Sci Technol; 2013; 67(2):353-8. PubMed ID: 23168635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The performance of constructed wetlands treating primary, secondary and dairy soiled water in Ireland (a review).
    Healy MG; O' Flynn CJ
    J Environ Manage; 2011 Oct; 92(10):2348-54. PubMed ID: 21665354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feasibility of constructed wetland planted with Leersia hexandra Swartz for removing Cr, Cu and Ni from electroplating wastewater.
    You SH; Zhang XH; Liu J; Zhu YN; Gu C
    Environ Technol; 2014; 35(1-4):187-94. PubMed ID: 24600856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.