These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
409 related articles for article (PubMed ID: 23489761)
1. Predicting patient survival after liver transplantation using evolutionary multi-objective artificial neural networks. Cruz-Ramírez M; Hervás-Martínez C; Fernández JC; Briceño J; de la Mata M Artif Intell Med; 2013 May; 58(1):37-49. PubMed ID: 23489761 [TBL] [Abstract][Full Text] [Related]
2. Use of artificial intelligence as an innovative donor-recipient matching model for liver transplantation: results from a multicenter Spanish study. Briceño J; Cruz-Ramírez M; Prieto M; Navasa M; Ortiz de Urbina J; Orti R; Gómez-Bravo MÁ; Otero A; Varo E; Tomé S; Clemente G; Bañares R; Bárcena R; Cuervas-Mons V; Solórzano G; Vinaixa C; Rubín A; Colmenero J; Valdivieso A; Ciria R; Hervás-Martínez C; de la Mata M J Hepatol; 2014 Nov; 61(5):1020-8. PubMed ID: 24905493 [TBL] [Abstract][Full Text] [Related]
4. Validation of artificial neural networks as a methodology for donor-recipient matching for liver transplantation. Ayllón MD; Ciria R; Cruz-Ramírez M; Pérez-Ortiz M; Gómez I; Valente R; O'Grady J; de la Mata M; Hervás-Martínez C; Heaton ND; Briceño J Liver Transpl; 2018 Feb; 24(2):192-203. PubMed ID: 28921876 [TBL] [Abstract][Full Text] [Related]
5. A machine learning-based approach to prognostic analysis of thoracic transplantations. Delen D; Oztekin A; Kong ZJ Artif Intell Med; 2010 May; 49(1):33-42. PubMed ID: 20153956 [TBL] [Abstract][Full Text] [Related]
6. Dynamically weighted evolutionary ordinal neural network for solving an imbalanced liver transplantation problem. Dorado-Moreno M; Pérez-Ortiz M; Gutiérrez PA; Ciria R; Briceño J; Hervás-Martínez C Artif Intell Med; 2017 Mar; 77():1-11. PubMed ID: 28545607 [TBL] [Abstract][Full Text] [Related]
7. Multi-objective evolutionary algorithms for fuzzy classification in survival prediction. Jiménez F; Sánchez G; Juárez JM Artif Intell Med; 2014 Mar; 60(3):197-219. PubMed ID: 24525210 [TBL] [Abstract][Full Text] [Related]
8. Predicting the graft survival for heart-lung transplantation patients: an integrated data mining methodology. Oztekin A; Delen D; Kong ZJ Int J Med Inform; 2009 Dec; 78(12):e84-96. PubMed ID: 19497782 [TBL] [Abstract][Full Text] [Related]
10. Sensitivity versus accuracy in multiclass problems using memetic Pareto evolutionary neural networks. Fernández Caballero JC; Martínez FJ; Hervás C; Gutiérrez PA IEEE Trans Neural Netw; 2010 May; 21(5):750-70. PubMed ID: 20227976 [TBL] [Abstract][Full Text] [Related]
11. A clinically based discrete-event simulation of end-stage liver disease and the organ allocation process. Shechter SM; Bryce CL; Alagoz O; Kreke JE; Stahl JE; Schaefer AJ; Angus DC; Roberts MS Med Decis Making; 2005; 25(2):199-209. PubMed ID: 15800304 [TBL] [Abstract][Full Text] [Related]
12. Survival on waiting list for liver transplantation before and after introduction of the model for end-stage liver disease score. Tenório AL; Macedo FI; Miranda LE; Fernandes JL; da Silva CM; Neto OL; Lacerda CM Transplant Proc; 2010 Mar; 42(2):407-11. PubMed ID: 20304152 [TBL] [Abstract][Full Text] [Related]
13. UNOS Liver Registry: ten year survivals. Waki K Clin Transpl; 2006; ():29-39. PubMed ID: 18368704 [TBL] [Abstract][Full Text] [Related]
14. Artificial neural network is superior to MELD in predicting mortality of patients with end-stage liver disease. Cucchetti A; Vivarelli M; Heaton ND; Phillips S; Piscaglia F; Bolondi L; La Barba G; Foxton MR; Rela M; O'Grady J; Pinna AD Gut; 2007 Feb; 56(2):253-8. PubMed ID: 16809421 [TBL] [Abstract][Full Text] [Related]
15. ABO blood group-related waiting list disparities in liver transplant candidates: effect of the MELD adoption. Barone M; Avolio AW; Di Leo A; Burra P; Francavilla A Transplantation; 2008 Mar; 85(6):844-9. PubMed ID: 18360266 [TBL] [Abstract][Full Text] [Related]
16. Liver transplantation in the United States: a report from the Organ Procurement and Transplantation Network. Smith CM; Davies DB; McBride MA Clin Transpl; 2000; ():19-30. PubMed ID: 11512312 [TBL] [Abstract][Full Text] [Related]
17. Prediction of different types of liver diseases using rule based classification model. Kumar Y; Sahoo G Technol Health Care; 2013; 21(5):417-32. PubMed ID: 23963359 [TBL] [Abstract][Full Text] [Related]
18. Allocation of liver grafts worldwide - Is there a best system? Tschuor C; Ferrarese A; Kuemmerli C; Dutkowski P; Burra P; Clavien PA; J Hepatol; 2019 Oct; 71(4):707-718. PubMed ID: 31199941 [TBL] [Abstract][Full Text] [Related]
19. Prognostic value of MELD score and donor quality in liver transplantation: implications for the donor recipient match. Avolio AW; Agnes S; Gasbarrini A; Nure E; Siciliano M; Castagneto M Transplant Proc; 2006 May; 38(4):1059-62. PubMed ID: 16757263 [TBL] [Abstract][Full Text] [Related]
20. Model for end-stage liver disease score-based allocation of donors for liver transplantation: a spanish multicenter experience. de la Mata M; Cuende N; Huet J; Bernardos A; Ferrón JA; Santoyo J; Pascasio JM; Rodrigo J; Solórzano G; Martín-Vivaldi R; Alonso M Transplantation; 2006 Dec; 82(11):1429-35. PubMed ID: 17164713 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]