These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 23489929)

  • 21. [Serotonin regulation of motor function of the small intestine].
    Lychkova AE
    Eksp Klin Gastroenterol; 2011; (3):130-5. PubMed ID: 21695962
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Automated detection of gastric slow wave events and estimation of propagation velocity vector fields from serosal high-resolution mapping.
    Du P; Qiao W; O'Grady G; Egbuji JU; Lammers W; Cheng LK; Pullan AJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2527-30. PubMed ID: 19964973
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Slow wave propagation and plasticity of interstitial cells of Cajal in the small intestine of diabetic rats.
    Lammers WJ; Al-Bloushi HM; Al-Eisaei SA; Al-Dhaheri FA; Stephen B; John R; Dhanasekaran S; Karam SM
    Exp Physiol; 2011 Oct; 96(10):1039-48. PubMed ID: 21742753
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Migrating motor complexes do not require electrical slow waves in the mouse small intestine.
    Spencer NJ; Sanders KM; Smith TK
    J Physiol; 2003 Dec; 553(Pt 3):881-93. PubMed ID: 14514874
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Relation between slow-wave frequency and spiking activity during the migrating myoelectric complex in dogs.
    Janssens W; Vandenbogaerde H; Caenepeel P; Janssens J; Vantrappen G
    Pflugers Arch; 1992 Aug; 421(5):492-6. PubMed ID: 1461717
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Does the cholinergic system modulate gastrointestinal slow waves during less active phases of migrating myoelectric complex in healthy rams?
    Romański KW
    Folia Med Cracov; 2003; 44(1-2):79-91. PubMed ID: 15232890
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A theoretical study of the initiation, maintenance and termination of gastric slow wave re-entry.
    Du P; Paskaranandavadivel N; O'Grady G; Tang SJ; Cheng LK
    Math Med Biol; 2015 Dec; 32(4):405-23. PubMed ID: 25552487
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Longitudinal and circumferential spike patches in the canine small intestine in vivo.
    Lammers WJ; Donck LV; Schuurkes JA; Stephen B
    Am J Physiol Gastrointest Liver Physiol; 2003 Nov; 285(5):G1014-27. PubMed ID: 12842824
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Small intestinal transections decrease the occurrence of tapeworm-induced myoelectric patterns in the rat.
    Dwinell KL; Bass P; Zou F; Oaks JA
    Neurogastroenterol Motil; 2002 Aug; 14(4):349-56. PubMed ID: 12213102
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intestinal microflora stimulates myoelectric activity of rat small intestine by promoting cyclic initiation and aboral propagation of migrating myoelectric complex.
    Husebye E; Hellström PM; Midtvedt T
    Dig Dis Sci; 1994 May; 39(5):946-56. PubMed ID: 8174436
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The bioelectrical conduction system around the ileocecal junction defined through in vivo high-resolution mapping in rabbits.
    Miller KJW; Cheng LK; Angeli-Gordon TR; Avci R; Paskaranandavadivel N
    Am J Physiol Gastrointest Liver Physiol; 2022 Oct; 323(4):G318-G330. PubMed ID: 35916409
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-resolution Mapping of Hyperglycemia-induced Gastric Slow Wave Dysrhythmias.
    Du P; Grady GO; Paskaranandavadivel N; Tang SJ; Abell T; Cheng LK
    J Neurogastroenterol Motil; 2019 Apr; 25(2):276-285. PubMed ID: 30870879
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Falling-edge, variable threshold (FEVT) method for the automated detection of gastric slow wave events in high-resolution serosal electrode recordings.
    Erickson JC; O'Grady G; Du P; Obioha C; Qiao W; Richards WO; Bradshaw LA; Pullan AJ; Cheng LK
    Ann Biomed Eng; 2010 Apr; 38(4):1511-29. PubMed ID: 20024624
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of gap junction inhibition on contraction waves in the murine small intestine in relation to coupled oscillator theory.
    Parsons SP; Huizinga JD
    Am J Physiol Gastrointest Liver Physiol; 2015 Feb; 308(4):G287-97. PubMed ID: 25501550
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Validation of noninvasive body-surface gastric mapping for detecting gastric slow-wave spatiotemporal features by simultaneous serosal mapping in porcine.
    Calder S; Cheng LK; Andrews CN; Paskaranandavadivel N; Waite S; Alighaleh S; Erickson JC; Gharibans A; O'Grady G; Du P
    Am J Physiol Gastrointest Liver Physiol; 2022 Oct; 323(4):G295-G305. PubMed ID: 35916432
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Targeted ablation of gastric pacemaker sites to modulate patterns of bioelectrical slow wave activation and propagation in an anesthetized pig model.
    Aghababaie Z; Cheng LK; Paskaranandavadivel N; Avci R; Chan CA; Matthee A; Amirapu S; Asirvatham SJ; Farrugia G; Beyder A; O'Grady G; Angeli-Gordon TR
    Am J Physiol Gastrointest Liver Physiol; 2022 Apr; 322(4):G431-G445. PubMed ID: 35137624
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanisms underlying nutrient-induced segmentation in isolated guinea pig small intestine.
    Gwynne RM; Bornstein JC
    Am J Physiol Gastrointest Liver Physiol; 2007 Apr; 292(4):G1162-72. PubMed ID: 17218474
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Localized bioelectrical conduction block from radiofrequency gastric ablation persists after healing: safety and feasibility in a recovery model.
    Aghababaie Z; O'Grady G; Nisbet LA; Modesto AE; Chan CA; Matthee A; Amirapu S; Beyder A; Farrugia G; Asirvatham SJ; Sands GB; Paskaranandavadivel N; Cheng LK; Angeli-Gordon TR
    Am J Physiol Gastrointest Liver Physiol; 2022 Dec; 323(6):G640-G652. PubMed ID: 36255716
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A novel retractable laparoscopic device for mapping gastrointestinal slow wave propagation patterns.
    Berry R; Paskaranandavadivel N; Du P; Trew ML; O'Grady G; Windsor JA; Cheng LK
    Surg Endosc; 2017 Jan; 31(1):477-486. PubMed ID: 27129554
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of cholecystokinin peptides on ovine duodeno-jejunal slow waves with and without pretreatment with proglumide.
    Romański KW
    J S Afr Vet Assoc; 2007 Dec; 78(4):209-14. PubMed ID: 18507220
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.