These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 23490013)

  • 1. Influence of environment on the fatigue crack growth behaviour of 12% Cr steel.
    Schönbauer BM; Stanzl-Tschegg SE
    Ultrasonics; 2013 Dec; 53(8):1399-405. PubMed ID: 23490013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microstructural changes induced near crack tip during corrosion fatigue tests in austenitic-ferritic steel.
    Gołebiowski B; Swiatnicki WA; Gaspérini M
    J Microsc; 2010 Mar; 237(3):352-8. PubMed ID: 20500395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Threshold intensity factors as lower boundaries for crack propagation in ceramics.
    Marx R; Jungwirth F; Walter PO
    Biomed Eng Online; 2004 Nov; 3(1):41. PubMed ID: 15548323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Effect of Stress Ratios on the Very High Cycle Fatigue Behavior of 9%Cr Turbine Steel at 630 °C.
    Wang Q; Chen Y; Liu Y; Wang C; Li L; He C; Gong X; Wang T; Zhang W; Wang Q; Zhang H
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32764288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclic fatigue-crack propagation, stress-corrosion, and fracture-toughness behavior in pyrolytic carbon-coated graphite for prosthetic heart valve applications.
    Ritchie RO; Dauskardt RH; Yu WK; Brendzel AM
    J Biomed Mater Res; 1990 Feb; 24(2):189-206. PubMed ID: 2329114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Underload Cycles on Oxide-Induced Crack Closure Development in Cr-Mo Low-Alloy Steel.
    Pokorný P; Vojtek T; Jambor M; Náhlík L; Hutař P
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34068046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone.
    Chong AC; Miller F; Buxton M; Friis EA
    J Biomech Eng; 2007 Aug; 129(4):487-93. PubMed ID: 17655469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stress ratio contributes to fatigue crack growth in dentin.
    Arola D; Zheng W; Sundaram N; Rouland JA
    J Biomed Mater Res A; 2005 May; 73(2):201-12. PubMed ID: 15744763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fatigue behavior of resin composites in aqueous environments.
    Takeshige F; Kawakami Y; Hayashi M; Ebisu S
    Dent Mater; 2007 Jul; 23(7):893-9. PubMed ID: 17007919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of test protocol variables for dental implant fatigue research.
    Lee CK; Karl M; Kelly JR
    Dent Mater; 2009 Nov; 25(11):1419-25. PubMed ID: 19646746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reliability of PMMA bone cement fixation: fracture and fatigue crack-growth behaviour.
    Nguyen NC; Maloney WJ; Dauskardt RH
    J Mater Sci Mater Med; 1997 Aug; 8(8):473-83. PubMed ID: 15348713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of fatigue crack growth in resin composite, dentin and the interface.
    Soappman MJ; Nazari A; Porter JA; Arola D
    Dent Mater; 2007 May; 23(5):608-14. PubMed ID: 16806452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of in situ thermography for evaluating the high-cycle and very high-cycle fatigue behaviour of cast aluminium alloy AlSi7Mg (T6).
    Krewerth D; Weidner A; Biermann H
    Ultrasonics; 2013 Dec; 53(8):1441-9. PubMed ID: 23541962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aspects of in vitro fatigue in human cortical bone: time and cycle dependent crack growth.
    Nalla RK; Kruzic JJ; Kinney JH; Ritchie RO
    Biomaterials; 2005 May; 26(14):2183-95. PubMed ID: 15576194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic aspects of in vitro fatigue-crack growth in dentin.
    Kruzic JJ; Nalla RK; Kinney JH; Ritchie RO
    Biomaterials; 2005 Apr; 26(10):1195-204. PubMed ID: 15451639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of crack initiation or damage in very high cycle fatigue using ultrasonic fatigue test and microstructure analysis.
    Chai G; Zhou N
    Ultrasonics; 2013 Dec; 53(8):1406-11. PubMed ID: 23850182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slow crack growth behaviour of hydroxyapatite ceramics.
    Benaqqa C; Chevalier J; Saädaoui M; Fantozzi G
    Biomaterials; 2005 Nov; 26(31):6106-12. PubMed ID: 15890401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Corrosion-Fatigue Crack Growth in Plates: A Model Based on the Paris Law.
    Toribio J; Matos JC; González B
    Materials (Basel); 2017 Apr; 10(4):. PubMed ID: 28772798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of tubule orientation on fatigue crack growth in dentin.
    Arola DD; Rouland JA
    J Biomed Mater Res A; 2003 Oct; 67(1):78-86. PubMed ID: 14517864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gamma irradiation alters fatigue-crack behavior and fracture toughness in 1900H and GUR 1050 UHMWPE.
    Cole JC; Lemons JE; Eberhardt AW
    J Biomed Mater Res; 2002; 63(5):559-66. PubMed ID: 12209901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.