These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 23490185)

  • 1. Citric acid-assisted phytoextraction of lead: a field experiment.
    Freitas EV; Nascimento CW; Souza A; Silva FB
    Chemosphere; 2013 Jun; 92(2):213-7. PubMed ID: 23490185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced phytoextraction of Pb and other metals from artificially contaminated soils through the combined application of EDTA and EDDS.
    Luo C; Shen Z; Li X; Baker AJ
    Chemosphere; 2006 Jun; 63(10):1773-84. PubMed ID: 16297960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of Energy Crop (Ricinus communis L.) for Phytoextraction of Heavy Metals Assisted with Citric Acid.
    Zhang H; Chen X; He C; Liang X; Oh K; Liu X; Lei Y
    Int J Phytoremediation; 2015; 17(7):632-9. PubMed ID: 25976877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced phytoextraction: II. Effect of EDTA and citric acid on heavy metal uptake by Helianthus annuus from a calcareous soil.
    Lesage E; Meers E; Vervaeke P; Lamsal S; Hopgood M; Tack FM; Verloo MG
    Int J Phytoremediation; 2005; 7(2):143-52. PubMed ID: 16128445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ethylenediaminedisuccinic acid (EDDS) enhances phytoextraction of lead by vetiver grass from contaminated residential soils in a panel study in the field.
    Attinti R; Barrett KR; Datta R; Sarkar D
    Environ Pollut; 2017 Jun; 225():524-533. PubMed ID: 28318794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced uptake of As, Zn, and Cu by Vetiveria zizanioides and Zea mays using chelating agents.
    Chiu KK; Ye ZH; Wong MH
    Chemosphere; 2005 Sep; 60(10):1365-75. PubMed ID: 16054905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fresh organic matter of municipal solid waste enhances phytoextraction of heavy metals from contaminated soil.
    Salati S; Quadri G; Tambone F; Adani F
    Environ Pollut; 2010 May; 158(5):1899-906. PubMed ID: 19932537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemically enhanced phytoextraction of risk elements from a contaminated agricultural soil using Zea mays and Triticum aestivum: performance and metal mobilization over a three year period.
    Neugschwandtner RW; Tlustos P; Komárek M; Száková J; Jakoubková L
    Int J Phytoremediation; 2012 Sep; 14(8):754-71. PubMed ID: 22908642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced phytoextraction: in search of EDTA alternatives.
    Meers E; Hopgood M; Lesage E; Vervaeke P; Tack FM; Verloo MG
    Int J Phytoremediation; 2004; 6(2):95-109. PubMed ID: 15328977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brassica juncea tested on urban soils moderately contaminated by lead: Origin of contamination and effect of chelates.
    Bouquet D; Braud A; Lebeau T
    Int J Phytoremediation; 2017 May; 19(5):425-430. PubMed ID: 27739899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The EDTA effect on phytoextraction of single and combined metals-contaminated soils using rainbow pink (Dianthus chinensis).
    Lai HY; Chen ZS
    Chemosphere; 2005 Aug; 60(8):1062-71. PubMed ID: 15993153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determining soil enzyme activities for the assessment of fungi and citric acid-assisted phytoextraction under cadmium and lead contamination.
    Mao L; Tang D; Feng H; Gao Y; Zhou P; Xu L; Wang L
    Environ Sci Pollut Res Int; 2015 Dec; 22(24):19860-9. PubMed ID: 26286803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slow release chelate enhancement of lead phytoextraction by corn (Zea mays L.) from contaminated soil--a preliminary study.
    Li H; Wang Q; Cui Y; Dong Y; Christie P
    Sci Total Environ; 2005 Mar; 339(1-3):179-87. PubMed ID: 15740768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytoextraction of Pb and Cu contaminated soil with maize and microencapsulated EDTA.
    Xie Z; Wu L; Chen N; Liu C; Zheng Y; Xu S; Li F; Xu Y
    Int J Phytoremediation; 2012 Sep; 14(8):727-40. PubMed ID: 22908640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential of Brassic rapa, Cannabis sativa, Helianthus annuus and Zea mays for phytoextraction of heavy metals from calcareous dredged sediment derived soils.
    Meers E; Ruttens A; Hopgood M; Lesage E; Tack FM
    Chemosphere; 2005 Oct; 61(4):561-72. PubMed ID: 16202810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of chelator-assisted phytoextraction, using EDTA, lead and Sedum alfredii Hance as a model system.
    Liu D; Islam E; Ma J; Wang X; Mahmood Q; Jin X; Li T; Yang X; Gupta D
    Bull Environ Contam Toxicol; 2008 Jul; 81(1):30-5. PubMed ID: 18484226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of EDTA- and citric acid-enhanced phytoextraction of heavy metals in artificially metal contaminated soil by Typha angustifolia.
    Muhammad D; Chen F; Zhao J; Zhang G; Wu F
    Int J Phytoremediation; 2009 Aug; 11(6):558-74. PubMed ID: 19810355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants.
    Lin Q; Shen KL; Zhao HM; Li WH
    J Hazard Mater; 2008 Feb; 150(3):515-21. PubMed ID: 17574741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS.
    Luo C; Shen Z; Li X
    Chemosphere; 2005 Mar; 59(1):1-11. PubMed ID: 15698638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of maize and poplar in chelant-enhanced phytoextraction of lead from contaminated agricultural soils.
    Komárek M; Tlustos P; Száková J; Chrastný V; Ettler V
    Chemosphere; 2007 Mar; 67(4):640-51. PubMed ID: 17184814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.