These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 23490364)

  • 1. A hybrid procedure for MSW generation forecasting at multiple time scales in Xiamen City, China.
    Xu L; Gao P; Cui S; Liu C
    Waste Manag; 2013 Jun; 33(6):1324-31. PubMed ID: 23490364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application and evaluation of forecasting methods for municipal solid waste generation in an Eastern-European city.
    Rimaityte I; Ruzgas T; Denafas G; Racys V; Martuzevicius D
    Waste Manag Res; 2012 Jan; 30(1):89-98. PubMed ID: 21382880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Municipal solid waste management planning for Xiamen City, China: a stochastic fractional inventory-theory-based approach.
    Chen X; Huang G; Zhao S; Cheng G; Wu Y; Zhu H
    Environ Sci Pollut Res Int; 2017 Nov; 24(31):24243-24260. PubMed ID: 28889216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Forecasting of municipal solid waste quantity in a developing country using multivariate grey models.
    Intharathirat R; Abdul Salam P; Kumar S; Untong A
    Waste Manag; 2015 May; 39():3-14. PubMed ID: 25704925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long short-term memory neural network and improved particle swarm optimization-based modeling and scenario analysis for municipal solid waste generation in Shanghai, China.
    Wang D; Yuan YA; Ben Y; Luo H; Guo H
    Environ Sci Pollut Res Int; 2022 Oct; 29(46):69472-69490. PubMed ID: 35567684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An inexact multi-objective dynamic model and its application in China for the management of municipal solid waste.
    Su J; Xi BD; Liu HL; Jiang YH; Warith MA
    Waste Manag; 2008 Dec; 28(12):2532-41. PubMed ID: 18572399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Municipal solid waste management in China: status, problems and challenges.
    Zhang DQ; Tan SK; Gersberg RM
    J Environ Manage; 2010 Aug; 91(8):1623-33. PubMed ID: 20413209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis and forecasting of municipal solid waste in Nankana City using geo-spatial techniques.
    Mahmood S; Sharif F; Rahman AU; Khan AU
    Environ Monit Assess; 2018 Apr; 190(5):275. PubMed ID: 29644486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid model for the prediction of municipal solid waste generation in Hangzhou, China.
    Zhang Z; Zhang Y; Wu D
    Waste Manag Res; 2019 Aug; 37(8):781-792. PubMed ID: 31264528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A two-stage support-vector-regression optimization model for municipal solid waste management - a case study of Beijing, China.
    Dai C; Li YP; Huang GH
    J Environ Manage; 2011 Dec; 92(12):3023-37. PubMed ID: 21872384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined Municipal Solid Waste and biomass system optimization for district energy applications.
    Rentizelas AA; Tolis AI; Tatsiopoulos IP
    Waste Manag; 2014 Jan; 34(1):36-48. PubMed ID: 24140378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of old and new municipal solid waste management systems in Denizli, Turkey.
    Ağdağ ON
    Waste Manag; 2009 Jan; 29(1):456-64. PubMed ID: 18346887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patterns of waste generation: A gradient boosting model for short-term waste prediction in New York City.
    Johnson NE; Ianiuk O; Cazap D; Liu L; Starobin D; Dobler G; Ghandehari M
    Waste Manag; 2017 Apr; 62():3-11. PubMed ID: 28216080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Examining the effectiveness of municipal solid waste management systems: an integrated cost-benefit analysis perspective with a financial cost modeling in Taiwan.
    Weng YC; Fujiwara T
    Waste Manag; 2011 Jun; 31(6):1393-406. PubMed ID: 21333520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Forecasting of municipal solid waste generation using non-linear autoregressive (NAR) neural models.
    Sunayana ; Kumar S; Kumar R
    Waste Manag; 2021 Feb; 121():206-214. PubMed ID: 33360819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Public opinion about the source separation of municipal solid waste in Shanghai, China.
    Zhang W; Che Y; Yang K; Ren X; Tai J
    Waste Manag Res; 2012 Dec; 30(12):1261-71. PubMed ID: 23045226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Forecasting municipal solid waste generation using prognostic tools and regression analysis.
    Ghinea C; Drăgoi EN; Comăniţă ED; Gavrilescu M; Câmpean T; Curteanu S; Gavrilescu M
    J Environ Manage; 2016 Nov; 182():80-93. PubMed ID: 27454099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. City classification for municipal solid waste prediction in mainland China based on K-means clustering.
    Du X; Niu D; Chen Y; Wang X; Bi Z
    Waste Manag; 2022 May; 144():445-453. PubMed ID: 35462289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of municipal solid waste generation using artificial neural network approach enhanced by structural break analysis.
    Adamović VM; Antanasijević DZ; Ristić MĐ; Perić-Grujić AA; Pocajt VV
    Environ Sci Pollut Res Int; 2017 Jan; 24(1):299-311. PubMed ID: 27718111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electricity Generation Forecast of Shanghai Municipal Solid Waste Based on Bidirectional Long Short-Term Memory Model.
    Liu B; Zhang N; Wang L; Zhang X
    Int J Environ Res Public Health; 2022 May; 19(11):. PubMed ID: 35682200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.