These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 23490365)

  • 41. Impact of MSWI bottom ash codisposed with MSW on landfill stabilization with different operational modes.
    Li WB; Yao J; Malik Z; Zhou GD; Dong M; Shen DS
    Biomed Res Int; 2014; 2014():167197. PubMed ID: 24779006
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Leaching heavy metals in municipal solid waste incinerator fly ash with chelator/biosurfactant mixed solution.
    Xu Y; Chen Y
    Waste Manag Res; 2015 Jul; 33(7):652-61. PubMed ID: 26185165
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Leaching characteristics of copper flotation waste before and after vitrification.
    Coruh S; Ergun ON
    J Environ Manage; 2006 Dec; 81(4):333-8. PubMed ID: 16730115
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Leaching behaviour of incineration bottom ash in a reuse scenario: 12years-field data vs. lab test results.
    Di Gianfilippo M; Hyks J; Verginelli I; Costa G; Hjelmar O; Lombardi F
    Waste Manag; 2018 Mar; 73():367-380. PubMed ID: 28822612
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of ferrous metal presence on lead leaching in municipal waste incineration bottom ashes.
    Oehmig WN; Roessler JG; Zhang J; Townsend TG
    J Hazard Mater; 2015; 283():500-6. PubMed ID: 25464288
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Preservative leaching from weathered CCA-treated wood.
    Townsend T; Dubey B; Tolaymat T; Solo-Gabriele H
    J Environ Manage; 2005 Apr; 75(2):105-13. PubMed ID: 15763153
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Leaching characteristics of fly ash from Chinese medical waste incineration.
    Tan Z; Xiao G
    Waste Manag Res; 2012 Mar; 30(3):285-94. PubMed ID: 20601401
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Leachability of municipal solid waste ashes in simulated landfill conditions.
    Li LY; Ohtsubo M; Higashi T; Yamaoka S; Morishita T
    Waste Manag; 2007; 27(7):932-45. PubMed ID: 17258447
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Antimony leaching from uncarbonated and carbonated MSWI bottom ash.
    Cornelis G; Van Gerven T; Vandecasteele C
    J Hazard Mater; 2006 Oct; 137(3):1284-92. PubMed ID: 16730886
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Influence of operational conditions, waste input and ageing on contaminant leaching from waste incinerator bottom ash: a full-scale study.
    Hyks J; Astrup T
    Chemosphere; 2009 Aug; 76(9):1178-84. PubMed ID: 19595431
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The metal-leaching and acid-neutralizing capacity of MSW incinerator ash co-disposed with MSW in landfill sites.
    Lo HM; Liao YL
    J Hazard Mater; 2007 Apr; 142(1-2):512-9. PubMed ID: 17008003
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Use of weathered and fresh bottom ash mix layers as a subbase in road constructions: environmental behavior enhancement by means of a retaining barrier.
    Del Valle-Zermeño R; Chimenos JM; Giró-Paloma J; Formosa J
    Chemosphere; 2014 Dec; 117():402-9. PubMed ID: 25180484
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Pilot scale evaluation of the BABIU process--upgrading of landfill gas or biogas with the use of MSWI bottom ash.
    Mostbauer P; Lombardi L; Olivieri T; Lenz S
    Waste Manag; 2014 Jan; 34(1):125-33. PubMed ID: 24120459
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A role for adsorption in lead leachability from MSWI bottom ASH.
    Chaspoul FR; Le Droguene MF; Barban G; Rose JC; Gallice PM
    Waste Manag; 2008; 28(8):1324-30. PubMed ID: 17881209
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Phase changes during various treatment processes for incineration bottom ash from municipal solid wastes: A review in the application-environment nexus.
    Zhu J; Wei Z; Luo Z; Yu L; Yin K
    Environ Pollut; 2021 Oct; 287():117618. PubMed ID: 34182388
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reducing volatilization of heavy metals in phosphate-pretreated municipal solid waste incineration fly ash by forming pyromorphite-like minerals.
    Sun Y; Zheng J; Zou L; Liu Q; Zhu P; Qian G
    Waste Manag; 2011 Feb; 31(2):325-30. PubMed ID: 21115339
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Short-term natural weathering of MSWI bottom ash as a function of particle size.
    Chimenos JM; Fernández AI; Miralles L; Segarra M; Espiell F
    Waste Manag; 2003; 23(10):887-95. PubMed ID: 14614923
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Antimony leaching from MSWI bottom ash: modelling of the effect of pH and carbonation.
    Cornelis G; Van Gerven T; Vandecasteele C
    Waste Manag; 2012 Feb; 32(2):278-86. PubMed ID: 22035902
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of chemical composition of fly ash on efficiency of metal separation in ash-melting of municipal solid waste.
    Okada T; Tomikawa H
    Waste Manag; 2013 Mar; 33(3):605-14. PubMed ID: 22981781
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ten-year chemical evolution of leachate and municipal solid waste incineration bottom ash used in a test road site.
    Dabo D; Badreddine R; De Windt L; Drouadaine I
    J Hazard Mater; 2009 Dec; 172(2-3):904-13. PubMed ID: 19733006
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.