BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 23493906)

  • 1. Indirect to direct band gap transition in ultra-thin silicon films.
    Lin L; Li Z; Feng J; Zhang Z
    Phys Chem Chem Phys; 2013 Apr; 15(16):6063-7. PubMed ID: 23493906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanostructured multilayer TiO2-Ge films with quantum confinement effects for photovoltaic applications.
    Khan AF; Mehmood M; Aslam M; Shah SI
    J Colloid Interface Sci; 2010 Mar; 343(1):271-80. PubMed ID: 20045525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoassisted tuning of silicon nanocrystal photoluminescence.
    Choi J; Wang NS; Reipa V
    Langmuir; 2007 Mar; 23(6):3388-94. PubMed ID: 17295527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silicon nanowire band gap modification.
    Nolan M; O'Callaghan S; Fagas G; Greer JC; Frauenheim T
    Nano Lett; 2007 Jan; 7(1):34-8. PubMed ID: 17212436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A strain or electric field induced direct bandgap in ultrathin silicon film and its application in photovoltaics or photocatalysis.
    Cao T; Wang D; Geng DS; Liu LM; Zhao J
    Phys Chem Chem Phys; 2016 Mar; 18(10):7156-62. PubMed ID: 26888664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions.
    Zhang S; Yan Z; Li Y; Chen Z; Zeng H
    Angew Chem Int Ed Engl; 2015 Mar; 54(10):3112-5. PubMed ID: 25564773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of the optical GAP in thin films of amorphous dilithium phthalocyanine using the Tauc and Cody models.
    Sánchez-Vergara ME; Alonso-Huitron JC; Rodriguez-Gómez A; Reider-Burstin JN
    Molecules; 2012 Aug; 17(9):10000-13. PubMed ID: 22922272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning of refractive indices and optical band gaps in oxidized silicon quantum dot solids.
    Choi JK; Jang S; Sohn H; Jeong HD
    J Am Chem Soc; 2009 Dec; 131(49):17894-900. PubMed ID: 19911790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells.
    Mallick SB; Agrawal M; Peumans P
    Opt Express; 2010 Mar; 18(6):5691-706. PubMed ID: 20389585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains.
    Johari P; Shenoy VB
    ACS Nano; 2012 Jun; 6(6):5449-56. PubMed ID: 22591011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoinduced Charge-Carrier Generation in Epitaxial MOF Thin Films: High Efficiency as a Result of an Indirect Electronic Band Gap?
    Liu J; Zhou W; Liu J; Howard I; Kilibarda G; Schlabach S; Coupry D; Addicoat M; Yoneda S; Tsutsui Y; Sakurai T; Seki S; Wang Z; Lindemann P; Redel E; Heine T; Wöll C
    Angew Chem Int Ed Engl; 2015 Jun; 54(25):7441-5. PubMed ID: 25960115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural evolution of nanocrystalline silicon thin films synthesized in high-density, low-temperature reactive plasmas.
    Cheng Q; Xu S; Ostrikov KK
    Nanotechnology; 2009 May; 20(21):215606. PubMed ID: 19423937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the surface photovoltage of silicon slabs with varying thickness.
    Vazhappilly T; Kilin DS; Micha DA
    J Phys Condens Matter; 2015 Apr; 27(13):134204. PubMed ID: 25767101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microstructural investigation of nickel silicide thin films and the silicide-silicon interface using transmission electron microscopy.
    Bhaskaran M; Sriram S; Mitchell DR; Short KT; Holland AS; Mitchell A
    Micron; 2009 Jan; 40(1):11-4. PubMed ID: 18337112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrophobic switching nature of methylcellulose ultra-thin films: thickness and annealing effects.
    Innis-Samson VA; Sakurai K
    J Phys Condens Matter; 2011 Nov; 23(43):435010. PubMed ID: 21983327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Band Gap Measurements of Nano-Meter Sized Rutile Thin Films.
    Diamantopoulos NC; Barnasas A; Garoufalis CS; Anyfantis DI; Bouropoulos N; Poulopoulos P; Baskoutas S
    Nanomaterials (Basel); 2020 Nov; 10(12):. PubMed ID: 33260313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Creating ligand-free silicon germanium alloy nanocrystal inks.
    Erogbogbo F; Liu T; Ramadurai N; Tuccarione P; Lai L; Swihart MT; Prasad PN
    ACS Nano; 2011 Oct; 5(10):7950-9. PubMed ID: 21928825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thickness dependence of spin polarization and electronic structure of ultra-thin films of MoS2 and related transition-metal dichalcogenides.
    Chang TR; Lin H; Jeng HT; Bansil A
    Sci Rep; 2014 Sep; 4():6270. PubMed ID: 25189645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Orientation effects in morphology and electronic properties of anatase TiO(2) one-dimensional nanostructures. I. Nanowires.
    Migas DB; Filonov AB; Borisenko VE; Skorodumova NV
    Phys Chem Chem Phys; 2014 May; 16(20):9479-89. PubMed ID: 24724155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Free standing luminescent silicon quantum dots: evidence of quantum confinement and defect related transitions.
    Ray M; Hossain SM; Klie RF; Banerjee K; Ghosh S
    Nanotechnology; 2010 Dec; 21(50):505602. PubMed ID: 21098931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.