These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 23493940)

  • 1. Self-catalytic solution-liquid-liquid-solid (SLLS) growth of tapered SnS nanorods.
    Cho KH; Sung YM
    Nanoscale; 2013 May; 5(9):3690-7. PubMed ID: 23493940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel method of synthesis of small band gap SnS nanorods and its efficient photocatalytic dye degradation.
    Das D; Dutta RK
    J Colloid Interface Sci; 2015 Nov; 457():339-44. PubMed ID: 26196717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile synthesis of iv-vi SnS nanocrystals with shape and size control: nanoparticles, nanoflowers and amorphous nanosheets.
    Ning J; Men K; Xiao G; Wang L; Dai Q; Zou B; Liu B; Zou G
    Nanoscale; 2010 Sep; 2(9):1699-703. PubMed ID: 20820700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porous SnS nanorods/carbon hybrid materials as highly stable and high capacity anode for Li-ion batteries.
    Cai J; Li Z; Shen PK
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):4093-8. PubMed ID: 22852819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Layer-stacked tin disulfide nanorods in silica nanoreactors with improved lithium storage capabilities.
    Wu P; Du N; Zhang H; Liu J; Chang L; Wang L; Yang D; Jiang JZ
    Nanoscale; 2012 Jul; 4(13):4002-6. PubMed ID: 22677937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface plasmon resonance induced enhancement of photoluminescence and Raman line intensity in SnS quantum dot-Sn nanoparticle hybrid structure.
    Warrier AR; Gandhimathi R
    Methods Appl Fluoresc; 2018 Apr; 6(3):035009. PubMed ID: 29633725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalyst-free growth of quasi-aligned nanorods of single crystal Cu3Mo2O9 and their catalytic properties.
    Chu WG; Wang HF; Guo YJ; Zhang LN; Han ZH; Li QQ; Fan SS
    Inorg Chem; 2009 Feb; 48(3):1243-9. PubMed ID: 19128151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface oxidation of tin chalcogenide nanocrystals revealed by 119Sn-Mössbauer spectroscopy.
    de Kergommeaux A; Faure-Vincent J; Pron A; de Bettignies R; Malaman B; Reiss P
    J Am Chem Soc; 2012 Jul; 134(28):11659-66. PubMed ID: 22691030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CeO2 nanorods and gold nanocrystals supported on CeO2 nanorods as catalyst.
    Huang PX; Wu F; Zhu BL; Gao XP; Zhu HY; Yan TY; Huang WP; Wu SH; Song DY
    J Phys Chem B; 2005 Oct; 109(41):19169-74. PubMed ID: 16853472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-performance visible-light-driven SnS₂/SnO₂ nanocomposite photocatalyst prepared via in situ hydrothermal oxidation of SnS₂ nanoparticles.
    Zhang YC; Du ZN; Li KW; Zhang M; Dionysiou DD
    ACS Appl Mater Interfaces; 2011 May; 3(5):1528-37. PubMed ID: 21476553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon-coated single-crystalline zinc sulfide nanowires.
    Shen G; Bando Y; Golberg D
    J Phys Chem B; 2006 Oct; 110(42):20777-80. PubMed ID: 17048886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous self-assembly of cerium oxide nanoparticles to nanorods through supraaggregate formation.
    Kuiry SC; Patil SD; Deshpande S; Seal S
    J Phys Chem B; 2005 Apr; 109(15):6936-9. PubMed ID: 16851784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, local structure and optical property studies of α-SnS microrods by synchrotron X-ray pair distribution function and micro-Raman shift.
    Gawai UP; Gaikwad DK; Patil SL; Pandey KK; Lalla NP; Dole BN
    RSC Adv; 2020 Jun; 10(36):21277-21282. PubMed ID: 35518770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New three-dimensional thiostannates composed of linked Cu8S12 clusters and the first example of a mixed-metal Cu7SnS12 cluster.
    Behrens M; Ordolff ME; Näther C; Bensch W; Becker KD; Guillot-Deudon C; Lafond A; Cody JA
    Inorg Chem; 2010 Sep; 49(18):8305-9. PubMed ID: 20726515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleation and growth of BaFxCl2-x nanorods.
    Xie T; Li S; Wang W; Peng Q; Li Y
    Chemistry; 2008; 14(31):9730-5. PubMed ID: 18781552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patterned fabrication of single ZnO nanorods and measurement of their optoelectrical characteristics.
    Yu CW; Lai SH; Wang TY; Lan MD; Ho MS
    J Nanosci Nanotechnol; 2008 Sep; 8(9):4377-81. PubMed ID: 19049028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sonochemical fabrication and characterization of stibnite nanorods.
    Wang H; Lu YN; Zhu JJ; Chen HY
    Inorg Chem; 2003 Oct; 42(20):6404-11. PubMed ID: 14514316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of quantum-sized cubic ZnS nanorods by the oriented attachment mechanism.
    Yu JH; Joo J; Park HM; Baik SI; Kim YW; Kim SC; Hyeon T
    J Am Chem Soc; 2005 Apr; 127(15):5662-70. PubMed ID: 15826206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cubic form of Pb(2-x)Sn(x)S2 stabilized through size reduction to the nanoscale.
    Soriano RB; Malliakas CD; Wu J; Kanatzidis MG
    J Am Chem Soc; 2012 Feb; 134(6):3228-33. PubMed ID: 22300016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A single-step reaction for silicon and germanium nanorods.
    Lu X; Korgel BA
    Chemistry; 2014 May; 20(20):5874-9. PubMed ID: 24643874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.