BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 23494318)

  • 1. Micropipette aspiration for studying cellular mechanosensory responses and mechanics.
    Kee YS; Robinson DN
    Methods Mol Biol; 2013; 983():367-82. PubMed ID: 23494318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence-coupled Micropipette Aspiration Assay to Investigate Red Blood Cell Mechanosensing.
    Jin J; Wang HJ; Chen YC; Russell B; Sun A; Wang Y; Ju LA
    J Vis Exp; 2024 Jan; (203):. PubMed ID: 38284529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micropipette aspiration of substrate-attached cells to estimate cell stiffness.
    Oh MJ; Kuhr F; Byfield F; Levitan I
    J Vis Exp; 2012 Sep; (67):. PubMed ID: 23051713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micropipette Aspiration of Oocytes to Assess Cortical Tension.
    Evans JP; Robinson DN
    Methods Mol Biol; 2018; 1818():163-171. PubMed ID: 29961265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elastic modulus of Dictyostelium is affected by mechanotransduction.
    Wu Y; Cooper KM
    J Biol Phys; 2019 Sep; 45(3):293-305. PubMed ID: 31363883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An axisymmetric boundary integral model for assessing elastic cell properties in the micropipette aspiration contact problem.
    Haider MA; Guilak F
    J Biomech Eng; 2002 Oct; 124(5):586-95. PubMed ID: 12405602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell shape regulation through mechanosensory feedback control.
    Mohan K; Luo T; Robinson DN; Iglesias PA
    J R Soc Interface; 2015 Aug; 12(109):20150512. PubMed ID: 26224568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biophysics: Push it, pull it.
    Hersen P; Ladoux B
    Nature; 2011 Feb; 470(7334):340-1. PubMed ID: 21331032
    [No Abstract]   [Full Text] [Related]  

  • 9. Optical interferometry based micropipette aspiration provides real-time sub-nanometer spatial resolution.
    Berardi M; Bielawski K; Rijnveld N; Gruca G; Aardema H; van Tol L; Wuite G; Akca BI
    Commun Biol; 2021 May; 4(1):610. PubMed ID: 34021241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Advances on the Model, Measurement Technique, and Application of Single Cell Mechanics.
    Huang H; Dai C; Shen H; Gu M; Wang Y; Liu J; Chen L; Sun L
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32872378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A finite element study of micropipette aspiration of single cells: effect of compressibility.
    Bidhendi AJ; Korhonen RK
    Comput Math Methods Med; 2012; 2012():192618. PubMed ID: 22400045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying cell-adhesion strength with micropipette manipulation: principle and application.
    Shao JY; Xu G; Guo P
    Front Biosci; 2004 Sep; 9():2183-91. PubMed ID: 15353280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling cellular deformations using the level set formalism.
    Yang L; Effler JC; Kutscher BL; Sullivan SE; Robinson DN; Iglesias PA
    BMC Syst Biol; 2008 Jul; 2():68. PubMed ID: 18652669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of the influence of actin-binding proteins using linear analyses of cell deformability.
    Plaza GR; Uyeda TQ; Mirzaei Z; Simmons CA
    Soft Matter; 2015 Jul; 11(27):5435-46. PubMed ID: 26059185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite Element Modelling of Single Cell Based on Atomic Force Microscope Indentation Method.
    Wang L; Wang L; Xu L; Chen W
    Comput Math Methods Med; 2019; 2019():7895061. PubMed ID: 31933677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Squeezing and detachment of living cells.
    Colbert MJ; Brochard-Wyart F; Fradin C; Dalnoki-Veress K
    Biophys J; 2010 Dec; 99(11):3555-62. PubMed ID: 21112279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effect of Cortical Elasticity and Active Tension on Cell Adhesion Mechanics.
    Smeets B; Cuvelier M; Pešek J; Ramon H
    Biophys J; 2019 Mar; 116(5):930-937. PubMed ID: 30773295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An axisymmetric boundary integral model for incompressible linear viscoelasticity: application to the micropipette aspiration contact problem.
    Haider MA; Guilak F
    J Biomech Eng; 2000 Jun; 122(3):236-44. PubMed ID: 10923291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A minimal mechanics model for mechanosensing of substrate rigidity gradient in durotaxis.
    Marzban B; Yi X; Yuan H
    Biomech Model Mechanobiol; 2018 Jun; 17(3):915-922. PubMed ID: 29354863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite element analysis of imposing femtonewton forces with micropipette aspiration.
    Shao JY
    Ann Biomed Eng; 2002 Apr; 30(4):546-54. PubMed ID: 12086005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.