These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 23494429)
1. Characterization of a PGA-based scaffold for use in a tissue-engineered neo-urinary conduit. Knight TA; Payne RG Methods Mol Biol; 2013; 1001():179-88. PubMed ID: 23494429 [TBL] [Abstract][Full Text] [Related]
2. Design, fabrication, and preparation of synthetic scaffolds for urologic tissue engineering. Payne RG; Knight TA Methods Mol Biol; 2013; 1001():167-77. PubMed ID: 23494428 [TBL] [Abstract][Full Text] [Related]
3. Histological evaluation of tissue regeneration using biodegradable scaffold seeded by autologous cells for tubular/hollow organ applications. Rivera EA; Jayo MJ Methods Mol Biol; 2013; 1001():353-74. PubMed ID: 23494443 [TBL] [Abstract][Full Text] [Related]
4. Isolation and myogenic differentiation of mesenchymal stem cells for urologic tissue engineering. Wu R; Liu G; Bharadwaj S; Zhang Y Methods Mol Biol; 2013; 1001():65-80. PubMed ID: 23494421 [TBL] [Abstract][Full Text] [Related]
5. Preliminary experience with tissue engineering of a venous vascular patch by using bone marrow-derived cells and a hybrid biodegradable polymer scaffold. Cho SW; Jeon O; Lim JE; Gwak SJ; Kim SS; Choi CY; Kim DI; Kim BS J Vasc Surg; 2006 Dec; 44(6):1329-40. PubMed ID: 17145438 [TBL] [Abstract][Full Text] [Related]
6. [In vitro tendon engineering using human dermal fibroblasts]. Deng D; Liu W; Xu F; Wu XL; Wei X; Zhong B; Cui L; Cao YL Zhonghua Yi Xue Za Zhi; 2008 Apr; 88(13):914-8. PubMed ID: 18756959 [TBL] [Abstract][Full Text] [Related]
7. Engineering human neo-tendon tissue in vitro with human dermal fibroblasts under static mechanical strain. Deng D; Liu W; Xu F; Yang Y; Zhou G; Zhang WJ; Cui L; Cao Y Biomaterials; 2009 Dec; 30(35):6724-30. PubMed ID: 19782396 [TBL] [Abstract][Full Text] [Related]
8. Microstructure and cytocompatibility of collagen matrices for urological tissue engineering. Montzka K; Läufer T; Becker C; Grosse J; Heidenreich A BJU Int; 2011 Jun; 107(12):1974-81. PubMed ID: 20840325 [TBL] [Abstract][Full Text] [Related]
9. Functionalization of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds via surface heparinization for bone tissue engineering. Jiang T; Khan Y; Nair LS; Abdel-Fattah WI; Laurencin CT J Biomed Mater Res A; 2010 Jun; 93(3):1193-208. PubMed ID: 19777575 [TBL] [Abstract][Full Text] [Related]
10. Production of an optimized tissue-engineered pig connective tissue for the reconstruction of the urinary tract. Ouellet G; Dubé J; Gauvin R; Laterreur V; Bouhout S; Bolduc S Tissue Eng Part A; 2011 Jun; 17(11-12):1625-33. PubMed ID: 21288158 [TBL] [Abstract][Full Text] [Related]
11. Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering. Wang J; Yu X Acta Biomater; 2010 Aug; 6(8):3004-12. PubMed ID: 20144749 [TBL] [Abstract][Full Text] [Related]
12. Potency evaluation of tissue engineered and regenerative medicine products. Guthrie K; Bruce A; Sangha N; Rivera E; Basu J Trends Biotechnol; 2013 Sep; 31(9):505-14. PubMed ID: 23932143 [TBL] [Abstract][Full Text] [Related]
13. Engineering porcine arteries: effects of scaffold modification. Prabhakar V; Grinstaff MW; Alarcon J; Knors C; Solan AK; Niklason LE J Biomed Mater Res A; 2003 Oct; 67(1):303-11. PubMed ID: 14517890 [TBL] [Abstract][Full Text] [Related]
14. Growth of human septal chondrocytes in fibrin scaffolds. Watson D; Sage A; Chang AA; Schumacher BL; Sah RL Am J Rhinol Allergy; 2010; 24(1):e19-22. PubMed ID: 20109313 [TBL] [Abstract][Full Text] [Related]
15. Tissue engineering technologies: just a quick note about transplantation of bioengineered donor trachea and augmentation cystoplasty by de novo engineered bladder tissue. Alberti C G Chir; 2009; 30(11-12):514-9. PubMed ID: 20109384 [TBL] [Abstract][Full Text] [Related]
16. In vivo engineering of a functional tendon sheath in a hen model. Xu L; Cao D; Liu W; Zhou G; Zhang WJ; Cao Y Biomaterials; 2010 May; 31(14):3894-902. PubMed ID: 20170958 [TBL] [Abstract][Full Text] [Related]
17. [Important contribution and necessity of stem cells scaffolds for regenerative medicine and the therapeutic applications]. Tabata Y Nihon Rinsho; 2008 May; 66(5):881-6. PubMed ID: 18464505 [TBL] [Abstract][Full Text] [Related]
18. Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies. Lu HH; Cooper JA; Manuel S; Freeman JW; Attawia MA; Ko FK; Laurencin CT Biomaterials; 2005 Aug; 26(23):4805-16. PubMed ID: 15763260 [TBL] [Abstract][Full Text] [Related]
19. Design and testing of biological scaffolds for delivering reparative cells to target sites in the lung. Ingenito EP; Sen E; Tsai LW; Murthy S; Hoffman A J Tissue Eng Regen Med; 2010 Jun; 4(4):259-72. PubMed ID: 20020503 [TBL] [Abstract][Full Text] [Related]
20. [Structure design examinations of three-dimensional textile scaffolds employed for tissue engineering in vitro: a pilot study]. Bäumchen F; Koch D; Gräber HG Biomed Tech (Berl); 2009 Dec; 54(6):357-66. PubMed ID: 19839714 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]