These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 2349445)

  • 1. [The importance of neuronal plasticity for regeneration and transplantation in the CNS].
    Pokorný J; Trojan S
    Sb Lek; 1990 Mar; 92(2-3):78-84. PubMed ID: 2349445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Survival and differentiation of pyramidal cells of the hippocampus after transplantation].
    Pokorný J; Trojan S
    Cas Lek Cesk; 1990 Aug; 129(34):1080-2. PubMed ID: 2224965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Survival and maturation of hippocampal suspension grafts.
    Pokorný J; Langmeier M; Trojan S
    J Hirnforsch; 1991; 32(5):611-5. PubMed ID: 1812175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasticity of hippocampal and motor cortical pyramidal neurons induced by self-stimulation experience.
    Rao BS; Desiraju T; Meti BL; Raju TR
    Indian J Physiol Pharmacol; 1994 Jan; 38(1):23-8. PubMed ID: 8132239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degeneration of hippocampal CA3 pyramidal cells induced by intraventricular kainic acid.
    Nadler JV; Perry BW; Gentry C; Cotman CW
    J Comp Neurol; 1980 Jul; 192(2):333-59. PubMed ID: 7400401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fetal hippocampal CA3 cell grafts enriched with fibroblast growth factor-2 exhibit enhanced neuronal integration into the lesioned aging rat hippocampus in a kainate model of temporal lobe epilepsy.
    Zaman V; Shetty AK
    Hippocampus; 2003; 13(5):618-32. PubMed ID: 12921351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective hippocampal lesions differentially affect the phenotypic fate of transplanted neuronal precursor cells.
    Shihabuddin LS; Holets VR; Whittemore SR
    Exp Neurol; 1996 May; 139(1):61-72. PubMed ID: 8635569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fate of the hippocampal mossy fiber projection after destruction of its postsynaptic targets with intraventricular kainic acid.
    Nadler JV; Perry BW; Gentry C; Cotman CW
    J Comp Neurol; 1981 Mar; 196(4):549-69. PubMed ID: 7204671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dendritic plasticity of CA1 pyramidal neurons after transient global ischemia.
    Ruan YW; Zou B; Fan Y; Li Y; Lin N; Zeng YS; Gao TM; Yao Z; Xu ZC
    Neuroscience; 2006 Jun; 140(1):191-201. PubMed ID: 16529877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term study of dendritic spines from hippocampal CA1 pyramidal cells, after neuroprotective melatonin treatment following global cerebral ischemia in rats.
    González-Burgos I; Letechipía-Vallejo G; López-Loeza E; Moralí G; Cervantes M
    Neurosci Lett; 2007 Aug; 423(2):162-6. PubMed ID: 17706355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Survival of grafted fetal neural cells in kainic acid lesioned CA3 region of adult hippocampus depends upon cell specificity.
    Zaman V; Turner DA; Shetty AK
    Exp Neurol; 2000 Feb; 161(2):535-61. PubMed ID: 10686075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bidirectional shift in the cornu ammonis 3 pyramidal dendritic organization following brief stress.
    Kole MH; Costoli T; Koolhaas JM; Fuchs E
    Neuroscience; 2004; 125(2):337-47. PubMed ID: 15062977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A quantitative analysis of the dendritic organization of pyramidal cells in the rat hippocampus.
    Ishizuka N; Cowan WM; Amaral DG
    J Comp Neurol; 1995 Nov; 362(1):17-45. PubMed ID: 8576427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organization of the nervous tissue (hippocampus and septum) developing in the anterior eye chamber. II. Neuronal perikarya and dendritic processes.
    Zhuravleva ZN; Bragin AG; Vinogradova OS
    J Hirnforsch; 1985; 26(4):419-37. PubMed ID: 4067280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of spine morphological plasticity in developing hippocampal pyramidal neurons.
    Parnass Z; Tashiro A; Yuste R
    Hippocampus; 2000; 10(5):561-8. PubMed ID: 11075826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron microscopic 3D-reconstruction of dendritic spines in cultured hippocampal neurons undergoing synaptic plasticity.
    Ovtscharoff W; Segal M; Goldin M; Helmeke C; Kreher U; Greenberger V; Herzog A; Michaelis B; Braun K
    Dev Neurobiol; 2008 Jun; 68(7):870-6. PubMed ID: 18327766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrastructural organization of normal and transplanted rat fascia dentata: I. A qualitative analysis of intracerebral and intraocular grafts.
    Sørensen T; Zimmer J
    J Comp Neurol; 1988 Jan; 267(1):15-42. PubMed ID: 3343390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bidirectional activity-dependent morphological plasticity in hippocampal neurons.
    Nägerl UV; Eberhorn N; Cambridge SB; Bonhoeffer T
    Neuron; 2004 Dec; 44(5):759-67. PubMed ID: 15572108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alterations in dendritic morphology of prefrontal cortical and nucleus accumbens neurons in post-pubertal rats after neonatal excitotoxic lesions of the ventral hippocampus.
    Flores G; Alquicer G; Silva-Gómez AB; Zaldivar G; Stewart J; Quirion R; Srivastava LK
    Neuroscience; 2005; 133(2):463-70. PubMed ID: 15878241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid spinogenesis of pyramidal neurons induced by activation of glucocorticoid receptors in adult male rat hippocampus.
    Komatsuzaki Y; Murakami G; Tsurugizawa T; Mukai H; Tanabe N; Mitsuhashi K; Kawata M; Kimoto T; Ooishi Y; Kawato S
    Biochem Biophys Res Commun; 2005 Oct; 335(4):1002-7. PubMed ID: 16111661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.