These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 23494520)

  • 1. The differential stress response of adapted chromite mine isolates Bacillus subtilis and Escherichia coli and its impact on bioremediation potential.
    Samuel J; Paul ML; Ravishankar H; Mathur A; Saha DP; Natarajan C; Mukherjee A
    Biodegradation; 2013 Nov; 24(6):829-42. PubMed ID: 23494520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing toxic Cr(VI) contamination in chromite mine overburden dump and its bacterial remediation.
    Dhal B; Das NN; Thatoi HN; Pandey BD
    J Hazard Mater; 2013 Sep; 260():141-9. PubMed ID: 23747472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cr (III) bioremoval capacities of indigenous and adapted bacterial strains from Palar river basin.
    Sundar K; Mukherjee A; Sadiq M; Chandrasekaran N
    J Hazard Mater; 2011 Mar; 187(1-3):553-61. PubMed ID: 21292393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bio-reduction of Cr(VI) by exopolysaccharides (EPS) from indigenous bacterial species of Sukinda chromite mine, India.
    Harish R; Samuel J; Mishra R; Chandrasekaran N; Mukherjee A
    Biodegradation; 2012 Jul; 23(4):487-96. PubMed ID: 22119897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Batch and continuous flow studies of adsorptive removal of Cr(VI) by adapted bacterial consortia immobilized in alginate beads.
    Samuel J; Pulimi M; Paul ML; Maurya A; Chandrasekaran N; Mukherjee A
    Bioresour Technol; 2013 Jan; 128():423-30. PubMed ID: 23201524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of cultural conditions for growth associated chromate reduction by Arthrobacter sp. SUK 1201 isolated from chromite mine overburden.
    Dey S; Paul AK
    J Hazard Mater; 2012 Apr; 213-214():200-6. PubMed ID: 22361630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation on mechanism of Cr(VI) reduction and removal by Bacillus amyloliquefaciens, a novel chromate tolerant bacterium isolated from chromite mine soil.
    Das S; Mishra J; Das SK; Pandey S; Rao DS; Chakraborty A; Sudarshan M; Das N; Thatoi H
    Chemosphere; 2014 Feb; 96():112-21. PubMed ID: 24091247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is Cr(III) toxic to bacteria: toxicity studies using Bacillus subtilis and Escherichia coli as model organism.
    Fathima A; Rao JR
    Arch Microbiol; 2018 Apr; 200(3):453-462. PubMed ID: 29189889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cr(VI) uptake mechanism of Bacillus cereus.
    Chen Z; Huang Z; Cheng Y; Pan D; Pan X; Yu M; Pan Z; Lin Z; Guan X; Wu Z
    Chemosphere; 2012 Apr; 87(3):211-6. PubMed ID: 22225704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Pb(II) and Cr(VI) Stress on Phosphate-Solubilizing Bacteria (
    Shao W; Li M; Teng Z; Qiu B; Huo Y; Zhang K
    Int J Environ Res Public Health; 2019 Jun; 16(12):. PubMed ID: 31248202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hematite enhances the removal of Cr(VI) by Bacillus subtilis BSn5 from aquatic environment.
    Ma S; Song CS; Chen Y; Wang F; Chen HL
    Chemosphere; 2018 Oct; 208():579-585. PubMed ID: 29890496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of Cr(VI) reduction and Cr(III) immobilization mechanism by planktonic cells and biofilms of Bacillus subtilis ATCC-6633.
    Pan X; Liu Z; Chen Z; Cheng Y; Pan D; Shao J; Lin Z; Guan X
    Water Res; 2014 May; 55():21-9. PubMed ID: 24583840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of chromium(VI) action on Arthrobacter oxydans.
    Asatiani NV; Abuladze MK; Kartvelishvili TM; Bakradze NG; Sapojnikova NA; Tsibakhashvili NY; Tabatadze LV; Lejava LV; Asanishvili LL; Holman HY
    Curr Microbiol; 2004 Nov; 49(5):321-6. PubMed ID: 15486705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of chromium-VI by chromium-resistant Escherichia coli FACU: a prospective bacterium for bioremediation.
    Mohamed MSM; El-Arabi NI; El-Hussein A; El-Maaty SA; Abdelhadi AA
    Folia Microbiol (Praha); 2020 Aug; 65(4):687-696. PubMed ID: 31989423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sonoassisted microbial reduction of chromium.
    Kathiravan MN; Karthick R; Muthu N; Muthukumar K; Velan M
    Appl Biochem Biotechnol; 2010 Apr; 160(7):2000-13. PubMed ID: 19636521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stress response of yeast candida intermedia to Cr(VI).
    Jamnik P; Raspor P
    J Biochem Mol Toxicol; 2003; 17(6):316-23. PubMed ID: 14708086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cometabolism of Cr(VI) by Shewanella oneidensis MR-1 produces cell-associated reduced chromium and inhibits growth.
    Middleton SS; Latmani RB; Mackey MR; Ellisman MH; Tebo BM; Criddle CS
    Biotechnol Bioeng; 2003 Sep; 83(6):627-37. PubMed ID: 12889027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction of Cr(VI) and bioaccumulation of chromium by gram positive and gram negative microorganisms not previously exposed to Cr-stress.
    Pattanapipitpaisal P; Mabbett AN; Finlay JA; Beswick AJ; Paterson-Beedle M; Essa A; Wright J; Tolley MR; Badar U; Ahmed N; Hobman JL; Brown NL; Macaskie LE
    Environ Technol; 2002 Jul; 23(7):731-45. PubMed ID: 12164635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation between bulk- and surface chemistry of Cr-tanned leather and the release of Cr(III) and Cr(VI).
    Hedberg YS; Lidén C; Odnevall Wallinder I
    J Hazard Mater; 2014 Sep; 280():654-61. PubMed ID: 25222930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromium sorption and Cr(VI) reduction to Cr(III) by grape stalks and yohimbe bark.
    Fiol N; Escudero C; Villaescusa I
    Bioresour Technol; 2008 Jul; 99(11):5030-6. PubMed ID: 17945493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.