These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 23494603)
1. Quantitative ultrasound analysis for classification of BI-RADS category 3 breast masses. Moon WK; Lo CM; Chang JM; Huang CS; Chen JH; Chang RF J Digit Imaging; 2013 Dec; 26(6):1091-8. PubMed ID: 23494603 [TBL] [Abstract][Full Text] [Related]
2. Computer-aided classification of BI-RADS category 3 breast lesions. Buchbinder SS; Leichter IS; Lederman RB; Novak B; Bamberger PN; Sklair-Levy M; Yarmish G; Fields SI Radiology; 2004 Mar; 230(3):820-3. PubMed ID: 14739315 [TBL] [Abstract][Full Text] [Related]
3. Computer aided classification system for breast ultrasound based on Breast Imaging Reporting and Data System (BI-RADS). Shen WC; Chang RF; Moon WK Ultrasound Med Biol; 2007 Nov; 33(11):1688-98. PubMed ID: 17681678 [TBL] [Abstract][Full Text] [Related]
4. Intensity-Invariant Texture Analysis for Classification of BI-RADS Category 3 Breast Masses. Lo CM; Moon WK; Huang CS; Chen JH; Yang MC; Chang RF Ultrasound Med Biol; 2015 Jul; 41(7):2039-48. PubMed ID: 25843514 [TBL] [Abstract][Full Text] [Related]
5. Accuracy of classification of breast ultrasound findings based on criteria used for BI-RADS. Heinig J; Witteler R; Schmitz R; Kiesel L; Steinhard J Ultrasound Obstet Gynecol; 2008 Sep; 32(4):573-8. PubMed ID: 18421795 [TBL] [Abstract][Full Text] [Related]
6. The diagnostic performance of ultrasound computer-aided diagnosis system for distinguishing breast masses: a prospective multicenter study. Wei Q; Yan YJ; Wu GG; Ye XR; Jiang F; Liu J; Wang G; Wang Y; Song J; Pan ZP; Hu JH; Jin CY; Wang X; Dietrich CF; Cui XW Eur Radiol; 2022 Jun; 32(6):4046-4055. PubMed ID: 35066633 [TBL] [Abstract][Full Text] [Related]
7. A computer-aided diagnosis system using artificial intelligence for the diagnosis and characterization of breast masses on ultrasound: Added value for the inexperienced breast radiologist. Park HJ; Kim SM; La Yun B; Jang M; Kim B; Jang JY; Lee JY; Lee SH Medicine (Baltimore); 2019 Jan; 98(3):e14146. PubMed ID: 30653149 [TBL] [Abstract][Full Text] [Related]
8. A combined ultrasonic B-mode and color Doppler system for the classification of breast masses using neural network. Qian X; Zhang B; Liu S; Wang Y; Chen X; Liu J; Yang Y; Chen X; Wei Y; Xiao Q; Ma J; Shung KK; Zhou Q; Liu L; Chen Z Eur Radiol; 2020 May; 30(5):3023-3033. PubMed ID: 32006174 [TBL] [Abstract][Full Text] [Related]
9. The Utility of the Fifth Edition of the BI-RADS Ultrasound Lexicon in Category 4 Breast Lesions: A Prospective Multicenter Study in China. Gu Y; Tian JW; Ran HT; Ren WD; Chang C; Yuan JJ; Kang CS; Deng YB; Wang H; Luo BM; Guo SL; Zhou Q; Xue ES; Zhan WW; Zhou Q; Li J; Zhou P; Zhang CQ; Chen M; Gu Y; Xu JF; Chen W; Zhang YH; Wang HQ; Li JC; Wang HY; Jiang YX Acad Radiol; 2022 Jan; 29 Suppl 1():S26-S34. PubMed ID: 32768352 [TBL] [Abstract][Full Text] [Related]
10. Downgrading and Upgrading Gray-Scale Ultrasound BI-RADS Categories of Benign and Malignant Masses With Optoacoustics: A Pilot Study. Neuschler EI; Lavin PT; Tucker FL; Barke LD; Bertrand ML; Böhm-Vélez M; Destounis S; Dogan BE; Grobmyer SR; Katzen J; Kist KA; Makariou EV; Parris TM; Young CA; Butler R AJR Am J Roentgenol; 2018 Sep; 211(3):689-700. PubMed ID: 29975115 [TBL] [Abstract][Full Text] [Related]
11. Computer-aided diagnosis of breast masses using quantified BI-RADS findings. Moon WK; Lo CM; Cho N; Chang JM; Huang CS; Chen JH; Chang RF Comput Methods Programs Biomed; 2013 Jul; 111(1):84-92. PubMed ID: 23639752 [TBL] [Abstract][Full Text] [Related]
12. Deep learning-based computer-aided diagnosis in screening breast ultrasound to reduce false-positive diagnoses. Kim S-; Choi Y; Kim E-; Han BK; Yoon JH; Choi JS; Chang JM Sci Rep; 2021 Jan; 11(1):395. PubMed ID: 33432076 [TBL] [Abstract][Full Text] [Related]
13. The value of elastography strain rate ratio in benign and malignant BI-RADS-US 3-4 breast masses. Li X; Sun W; Zhang H Biomol Biomed; 2024 May; 24(3):625-632. PubMed ID: 38149832 [TBL] [Abstract][Full Text] [Related]
14. A computer-aided diagnosis system for breast ultrasound based on weighted BI-RADS classes. Rodríguez-Cristerna A; Gómez-Flores W; de Albuquerque Pereira WC Comput Methods Programs Biomed; 2018 Jan; 153():33-40. PubMed ID: 29157459 [TBL] [Abstract][Full Text] [Related]
15. Downgrading Breast Imaging Reporting and Data System categories in ultrasound using strain elastography and computer-aided diagnosis system: a multicenter, prospective study. Du Y; Ma J; Wu T; Li F; Pan J; Du L; Zhang M; Diao X; Wu R Br J Radiol; 2024 Oct; 97(1162):1653-1660. PubMed ID: 39102827 [TBL] [Abstract][Full Text] [Related]
16. Comparison of conventional and automated breast volume ultrasound in the description and characterization of solid breast masses based on BI-RADS features. Kim H; Cha JH; Oh HY; Kim HH; Shin HJ; Chae EY Breast Cancer; 2014 Jul; 21(4):423-8. PubMed ID: 23086698 [TBL] [Abstract][Full Text] [Related]
17. Predictive value of contrast-enhanced ultrasonography and ultrasound elastography for management of BI-RADS category 4 nonpalpable breast masses. Niu Q; Zhao L; Wang R; Du L; Shi Q; Jia C; Li G; Jin L; Li F Eur J Radiol; 2024 Apr; 173():111391. PubMed ID: 38422608 [TBL] [Abstract][Full Text] [Related]
18. Comparison of retraction phenomenon and BI-RADS-US descriptors in differentiating benign and malignant breast masses using an automated breast volume scanner. Zheng FY; Yan LX; Huang BJ; Xia HS; Wang X; Lu Q; Li CX; Wang WP Eur J Radiol; 2015 Nov; 84(11):2123-9. PubMed ID: 26272029 [TBL] [Abstract][Full Text] [Related]
19. Deep Learning-Based Computer-Aided Diagnosis for Breast Lesion Classification on Ultrasound: A Prospective Multicenter Study of Radiologists Without Breast Ultrasound Expertise. He P; Chen W; Bai MY; Li J; Wang QQ; Fan LH; Zheng J; Liu CT; Zhang XR; Yuan XR; Song PJ; Cui LG AJR Am J Roentgenol; 2023 Oct; 221(4):450-459. PubMed ID: 37222275 [No Abstract] [Full Text] [Related]
20. A comparison of logistic regression analysis and an artificial neural network using the BI-RADS lexicon for ultrasonography in conjunction with introbserver variability. Kim SM; Han H; Park JM; Choi YJ; Yoon HS; Sohn JH; Baek MH; Kim YN; Chae YM; June JJ; Lee J; Jeon YH J Digit Imaging; 2012 Oct; 25(5):599-606. PubMed ID: 22270787 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]