BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 23494709)

  • 1. A multi-factors rational design strategy for enhancing the thermostability of Escherichia coli AppA phytase.
    Fei B; Xu H; Cao Y; Ma S; Guo H; Song T; Qiao D; Cao Y
    J Ind Microbiol Biotechnol; 2013 May; 40(5):457-64. PubMed ID: 23494709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AppA C-terminal plays an important role in its thermostability in Escherichia coli.
    Fei B; Cao Y; Xu H; Li X; Song T; Fei Z; Qiao D; Cao Y
    Curr Microbiol; 2013 Apr; 66(4):374-8. PubMed ID: 23238954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modifying thermostability of appA from Escherichia coli.
    Zhu W; Qiao D; Huang M; Yang G; Xu H; Cao Y
    Curr Microbiol; 2010 Oct; 61(4):267-73. PubMed ID: 20213104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A rational design to enhance the resistance of Escherichia coli phytase appA to trypsin.
    Wang X; Du J; Zhang ZY; Fu YJ; Wang WM; Liang AH
    Appl Microbiol Biotechnol; 2018 Nov; 102(22):9647-9656. PubMed ID: 30178201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assembly of mutations for improving thermostability of Escherichia coli AppA2 phytase.
    Kim MS; Weaver JD; Lei XG
    Appl Microbiol Biotechnol; 2008 Jul; 79(5):751-8. PubMed ID: 18443782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between Escherichia coli AppA phytase's thermostability and salt bridges.
    Fei B; Xu H; Zhang F; Li X; Ma S; Cao Y; Xie J; Qiao D; Cao Y
    J Biosci Bioeng; 2013 Jun; 115(6):623-7. PubMed ID: 23333035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving specific activity and thermostability of Escherichia coli phytase by structure-based rational design.
    Wu TH; Chen CC; Cheng YS; Ko TP; Lin CY; Lai HL; Huang TY; Liu JR; Guo RT
    J Biotechnol; 2014 Apr; 175():1-6. PubMed ID: 24518264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the thermostability of Escherichia coli phytase, appA, by enhancement of glycosylation.
    Yao MZ; Wang X; Wang W; Fu YJ; Liang AH
    Biotechnol Lett; 2013 Oct; 35(10):1669-76. PubMed ID: 23794051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing thermostability of Escherichia coli phytase AppA2 by error-prone PCR.
    Kim MS; Lei XG
    Appl Microbiol Biotechnol; 2008 May; 79(1):69-75. PubMed ID: 18340444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing the thermal tolerance and gastric performance of a microbial phytase for use as a phosphate-mobilizing monogastric-feed supplement.
    Garrett JB; Kretz KA; O'Donoghue E; Kerovuo J; Kim W; Barton NR; Hazlewood GP; Short JM; Robertson DE; Gray KA
    Appl Environ Microbiol; 2004 May; 70(5):3041-6. PubMed ID: 15128565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational design-based engineering of a thermostable phytase by site-directed mutagenesis.
    Fakhravar A; Hesampour A
    Mol Biol Rep; 2018 Dec; 45(6):2053-2061. PubMed ID: 30196454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of E. coli Phytase for Increased Thermostability Guided by Rational Parameters.
    Li J; Li X; Gai Y; Sun Y; Zhang D
    J Microbiol Biotechnol; 2019 Mar; 29(3):419-428. PubMed ID: 30786696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing the Thermostability of Phytase to Boiling Point by Evolution-Guided Design.
    Wang Q; Liu X; Tian J; Wang Y; Zhang H; Wang Y; Luo H; Yao B; Huang H; Tu T
    Appl Environ Microbiol; 2022 Jun; 88(11):e0050622. PubMed ID: 35546578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutational analysis of a catalytically important loop containing active site and substrate-binding site in Escherichia coli phytase AppA.
    Wada M; Hayashi Y; Arai M
    Biosci Biotechnol Biochem; 2019 May; 83(5):860-868. PubMed ID: 30712472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-directed mutagenesis improves catalytic efficiency and thermostability of Escherichia coli pH 2.5 acid phosphatase/phytase expressed in Pichia pastoris.
    Rodriguez E; Wood ZA; Karplus PA; Lei XG
    Arch Biochem Biophys; 2000 Oct; 382(1):105-12. PubMed ID: 11051103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overexpression of the phytase from Escherichia coli and its extracellular production in bioreactors.
    Miksch G; Kleist S; Friehs K; Flaschel E
    Appl Microbiol Biotechnol; 2002 Sep; 59(6):685-94. PubMed ID: 12226725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overexpression of Escherichia coli phytase in Pichia pastoris and its biochemical properties.
    Tai HM; Yin LJ; Chen WC; Jiang ST
    J Agric Food Chem; 2013 Jun; 61(25):6007-15. PubMed ID: 23738921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of Yersinia frederiksenii phytase performance by a single amino acid substitution.
    Fu D; Huang H; Meng K; Wang Y; Luo H; Yang P; Yuan T; Yao B
    Biotechnol Bioeng; 2009 Aug; 103(5):857-64. PubMed ID: 19378262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved thermostability and enzyme activity of a recombinant phyA mutant phytase from Aspergillus niger N25 by directed evolution and site-directed mutagenesis.
    Tang Z; Jin W; Sun R; Liao Y; Zhen T; Chen H; Wu Q; Gou L; Li C
    Enzyme Microb Technol; 2018 Jan; 108():74-81. PubMed ID: 29108630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving catalytic efficiency and maximum activity at low pH of Aspergillus neoniger phytase using rational design.
    Zhou S; Liu Z; Xie W; Yu Y; Ning C; Yuan M; Mou H
    Int J Biol Macromol; 2019 Jun; 131():1117-1124. PubMed ID: 30910675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.