These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 23494806)

  • 1. High CO2 selectivity in methanol steam reforming through ZnPd/ZnO teamwork.
    Friedrich M; Penner S; Heggen M; Armbrüster M
    Angew Chem Int Ed Engl; 2013 Apr; 52(16):4389-92. PubMed ID: 23494806
    [No Abstract]   [Full Text] [Related]  

  • 2. Controlling ZnO morphology for improved methanol steam reforming reactivity.
    Karim AM; Conant T; Datye AK
    Phys Chem Chem Phys; 2008 Sep; 10(36):5584-90. PubMed ID: 18956093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subsurface-controlled CO2 selectivity of PdZn near-surface alloys in H2 generation by methanol steam reforming.
    Rameshan C; Stadlmayr W; Weilach C; Penner S; Lorenz H; Hävecker M; Blume R; Rocha T; Teschner D; Knop-Gericke A; Schlögl R; Memmel N; Zemlyanov D; Rupprechter G; Klötzer B
    Angew Chem Int Ed Engl; 2010 Apr; 49(18):3224-7. PubMed ID: 20352638
    [No Abstract]   [Full Text] [Related]  

  • 4. In situ synthesis of Cu nanocatalysts on ZnO whiskers embedded in a microstructured paper composite for autothermal hydrogen production.
    Koga H; Kitaoka T; Wariishi H
    Chem Commun (Camb); 2008 Nov; (43):5616-8. PubMed ID: 18997970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of the components' interface on the synthesis of methanol over Cu/ZnO from CO2/H2: a microkinetic analysis based on DFT + U calculations.
    Tang QL; Zou WT; Huang RK; Wang Q; Duan XX
    Phys Chem Chem Phys; 2015 Mar; 17(11):7317-33. PubMed ID: 25697118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct synthesis of dimethyl carbonate from methanol and carbon dioxide over CeO2(X)-ZnO(1-X) nano-catalysts.
    Kang KH; Joe W; Lee CH; Kim M; Kim DB; Jang B; Song IK
    J Nanosci Nanotechnol; 2013 Dec; 13(12):8116-20. PubMed ID: 24266202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Density functional study of methanol decomposition on clean and O or OH adsorbed PdZn(111).
    Huang Y; He X; Chen ZX
    J Chem Phys; 2013 May; 138(18):184701. PubMed ID: 23676058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A colloidal ZnO/Cu nanocatalyst for methanol synthesis.
    Schröter MK; Khodeir L; van den Berg MW; Hikov T; Cokoja M; Miao S; Grünert W; Muhler M; Fischer RA
    Chem Commun (Camb); 2006 Jun; (23):2498-500. PubMed ID: 16758028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanosized CuO and ZnO Catalyst Supported on Honeycomb-Typed Monolith for Hydrogenation of Carbon Dioxide to Methyl Alcohol.
    Park CM; Ahn WJ; Jo WK; Song JH; Oh CY; Jeong YS; Chung MC; Park KP; Kim KJ; Jeong WJ; Sohn BK; Jung SC; Lee DJ; Ahn BK; Ahn HG
    J Nanosci Nanotechnol; 2015 Jan; 15(1):570-4. PubMed ID: 26328404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CO2 hydrogenation to methanol on supported Au catalysts under moderate reaction conditions: support and particle size effects.
    Hartadi Y; Widmann D; Behm RJ
    ChemSusChem; 2015 Feb; 8(3):456-65. PubMed ID: 25339625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of hydrogen production of methanol reformation using Cu/ZnO/Al2O3 catalyst.
    Wu HS; Chung SC
    J Comb Chem; 2007; 9(6):990-7. PubMed ID: 17900166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct synthesis of ethanol from dimethyl ether and syngas over combined H-Mordenite and Cu/ZnO catalysts.
    Li X; San X; Zhang Y; Ichii T; Meng M; Tan Y; Tsubaki N
    ChemSusChem; 2010 Oct; 3(10):1192-9. PubMed ID: 20715046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Zn on the adsorption of CO on Pd(111).
    Huang Y; Ding W; Chen ZX
    J Chem Phys; 2010 Dec; 133(21):214702. PubMed ID: 21142309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of ultrathin ZnO nanofibers aligned on a zinc substrate.
    Fang Y; Pang Q; Wen X; Wang J; Yang S
    Small; 2006 May; 2(5):612-5. PubMed ID: 17193095
    [No Abstract]   [Full Text] [Related]  

  • 15. Carbon dioxide adsorption on a ZnO(101[combining macron]0) substrate studied by infrared reflection absorption spectroscopy.
    Buchholz M; Weidler PG; Bebensee F; Nefedov A; Wöll C
    Phys Chem Chem Phys; 2014 Jan; 16(4):1672-8. PubMed ID: 24322892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comment on "Active sites for CO
    Nakamura J; Fujitani T; Kuld S; Helveg S; Chorkendorff I; Sehested J
    Science; 2017 Sep; 357(6354):. PubMed ID: 28860354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ZnO is a CO(2)-selective steam reforming catalyst.
    Lorenz H; Friedrich M; Armbrüster M; Klötzer B; Penner S
    J Catal; 2013 Jan; 297(C):151-154. PubMed ID: 23335817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of electrochemical and photoelectrochemical properties of fibrous Zn and ZnO electrodes.
    López CM; Choi KS
    Chem Commun (Camb); 2005 Jul; (26):3328-30. PubMed ID: 15983663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epitaxial electrodeposition of ZnO on Au(111) from alkaline solution: exploiting amphoterism in Zn(II).
    Limmer SJ; Kulp EA; Switzer JA
    Langmuir; 2006 Dec; 22(25):10535-9. PubMed ID: 17129027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled production of ZnO nanoparticles from zinc glycerolate in a sol-gel silica matrix.
    Moleski R; Leontidis E; Krumeich F
    J Colloid Interface Sci; 2006 Oct; 302(1):246-53. PubMed ID: 16890234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.