These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 23494812)

  • 1. Live cell refractometry based on non-SPR microparticle sensor.
    Liu C; Chen DD; Yu L; Luo Y
    Electrophoresis; 2013 Jun; 34(11):1526-9. PubMed ID: 23494812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variable wavelength surface plasmon resonance (SPR) in biosensing.
    Eum NS; Kim DE; Yeom SH; Kang BH; Kim KJ; Park CS; Kang SW
    Biosystems; 2009 Oct; 98(1):51-5. PubMed ID: 19486923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new surface plasmon resonance sensor for high-throughput screening applications.
    Piliarik M; Vaisocherová H; Homola J
    Biosens Bioelectron; 2005 Apr; 20(10):2104-10. PubMed ID: 15741081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High resolution interrogation of tilted fiber grating SPR sensors from polarization properties measurement.
    Caucheteur C; Shevchenko Y; Shao LY; Wuilpart M; Albert J
    Opt Express; 2011 Jan; 19(2):1656-64. PubMed ID: 21263705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A periodically coupled plasmon nanostructure for refractive index sensing.
    Briscoe JL; Cho SY
    Opt Express; 2011 Apr; 19(9):8815-20. PubMed ID: 21643134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface-plasmon-resonance-based fiber-optic refractive index sensor: sensitivity enhancement.
    Bhatia P; Gupta BD
    Appl Opt; 2011 May; 50(14):2032-6. PubMed ID: 21556104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transparent and flexible force sensor array based on optical waveguide.
    Kim Y; Park S; Park SK; Yun S; Kyung KU; Sun K
    Opt Express; 2012 Jun; 20(13):14486-93. PubMed ID: 22714510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescent-free detection on nanobiochips based on wavelength-dependent single plasmonic nanoparticles by differential interference contrast microscopy.
    Lee S; Kang SH
    Biosens Bioelectron; 2014 Oct; 60():45-51. PubMed ID: 24768861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pixelated high-index ring Bragg fibers.
    Baz A; Bouwmans G; Bigot L; Quiquempois Y
    Opt Express; 2012 Aug; 20(17):18795-802. PubMed ID: 23038519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-channel differential surface plasmon ellipsometry for bio-chemical sensing.
    Hooper IR; Rooth M; Sambles JR
    Biosens Bioelectron; 2009 Oct; 25(2):411-7. PubMed ID: 19713095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct optical measurement of light coupling into planar waveguide by plasmonic nanoparticles.
    Pennanen AM; Toppari JJ
    Opt Express; 2013 Jan; 21 Suppl 1():A23-35. PubMed ID: 23389272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-resolution simultaneous microscopy of refractive index and fluorescent intensity distributions by using localized surface plasmons.
    Terakado G; Ning J; Watanabe K; Kano H
    Appl Opt; 2013 May; 52(14):3324-8. PubMed ID: 23669847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging non-fluorescent nanoparticles in living cells with wavelength-dependent differential interference contrast microscopy and planar illumination microscopy.
    Sun W; Xiao L; Fang N
    Methods Mol Biol; 2013; 931():169-86. PubMed ID: 23027004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intrinsic temperature sensitivity of tilted fiber Bragg grating based surface plasmon resonance sensors.
    Shao LY; Shevchenko Y; Albert J
    Opt Express; 2010 May; 18(11):11464-71. PubMed ID: 20589007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct fabrication of PDMS waveguides via low-cost DUV irradiation for optical sensing.
    Valouch S; Sieber H; Kettlitz S; Eschenbaum C; Hollenbach U; Lemmer U
    Opt Express; 2012 Dec; 20(27):28855-61. PubMed ID: 23263126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical analysis of a fiber optic surface plasmon resonance sensor utilizing a Bragg grating.
    Spacková B; Homola J
    Opt Express; 2009 Dec; 17(25):23254-64. PubMed ID: 20052251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-performance nanosensors based on plasmonic Fano-like interference: probing refractive index with individual nanorice and nanobelts.
    López-Tejeira F; Paniagua-Domínguez R; Sánchez-Gil JA
    ACS Nano; 2012 Oct; 6(10):8989-96. PubMed ID: 22953763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Colorimetric sensors using nano-patch surface plasmon resonators.
    Khorasaninejad M; Mohsen Raeis-Zadeh S; Amarloo H; Abedzadeh N; Safavi-Naeini S; Saini SS
    Nanotechnology; 2013 Sep; 24(35):355501. PubMed ID: 23917424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multimode interference demultiplexers and splitters in metal-insulator-metal waveguides.
    Kou Y; Chen X
    Opt Express; 2011 Mar; 19(7):6042-7. PubMed ID: 21451628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface wave sensors based on nanometric layers of strongly absorbing materials.
    Zhang Y; Arnold C; Offermans P; Gómez Rivas J
    Opt Express; 2012 Apr; 20(9):9431-41. PubMed ID: 22535033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.